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Abstract—The design and implementation of an integrated
wearable face recognition and training system for prosopagnosia
patients are presented. The purpose of this assistive technology
is to provide real-time memory assistance and long-term rehabil-
itation. The real-time face recognition mode provides audio and
visual notification of people who interact with the subject, while
the at-home training mode combines features of mnemonic and
perceptual training to help with prosopagnosia rehabilitation. In
addition, a custom eye tracker is developed to determine the
person whom the subject is making eye contact with within a
crowd. Using the inverted face effect to mimic the difficulties
of prosopagnosia patients, clinically healthy participants have
shown improvements in their face-naming abilities. Early re-
sults indicate the system’s potential to enrich the well-being of
prosopagnosia patients.

Index Terms—Assistive technology, wearable technology,
human-computer interaction, visual memory prosthetic,
prosopagnosia.

I. BACKGROUND AND INTRODUCTION

Recognizing familiar faces of acquaintances, families, and

friends, even one’s partner is an essential and critical ability in

social interactions. Lacking such ability, known as a disorder

called prosopagnosia can cause severe limitations in people’s

social life.

Prosopagnosia is a cognitive disorder characterized by defi-

ciencies in recognizing the faces of familiar people. It affects

as many as 2% of the population [1]. There are two types

of prosopagnosia, acquired and developmental. Although few

studies have investigated prosopagnosia rehabilitation, con-

vincing evidence exists to show that rehabilitation is effective

for developmental prosopagnosia patients [2].

Common rehabilitation approaches focus on the enhance-

ment of mnemonic and perceptual abilities. Some training

programs are designed to emphasize the perception of facial

features [3]. An effective technique is ”feature naming” which

has shown remarkable improvements in patients’ ability to

recognize familiar faces [3]–[6]. Results from larger-scale

studies have confirmed that the effects of perceptual training

can be generalized for a large population of developmental

prosopagnosics [4], [7].

Due to their inabilities, prosopagnosics’ face social diffi-

culties include limited social involvements and employment

opportunities [8]. Consequently, these challenges lead them

to anxiety and depression and severely impact their mental

well-being [9], [10]. Therefore, we propose that an assistive

and rehabilitation system is essential to improve their social

interaction and mental health.

Fig. 1: The wearable glass design for prosopagnosia worn by a subject.

Early researches proposed wearable devices as a “personal

visual assistant” and “visual memory prosthetic” for the

visually-impaired to improve their social activities [11]–[14].

An existing portable vision commercial device is MyEye 2.0,

produced by OrCam [13]. This product allows a visually

impaired user to identify objects and recognize faces in front

of them through hand gestures and audio notifications. Another

study proposed a face recognition smartphone application with

a wearable camera by the chest to record and report contextual

information from previous interactions [15]. The majority of

visual assistive systems are designed for general visually-

impaired people, i.e. low vision or blind individuals. Besides,

the face recognition system proposed for prosopagnosia and

Alzheimer’s Disease [16] does not include the capability of

rehabilitation for developmental prosopagnosics [17].

This paper proposes the first wearable system that can act

both as a real-time memory assistant and a long-term at-home

self-training tool. The architecture of the proposed system is

inspired by “WearCamTM” [11]: a face image of the human

subject is taken through a wearable camera, and these images

are used during face-naming training for the user.

As proof of concept, preliminary experiments were per-
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Fig. 2: Fractal nature of human-computer communication. The human brain
and body interact in a feedback loop of efferent and afferent nerves. In a
HUMACHINE (human-machine symbiosis), the human and machine interact,
e.g. through senses (human) and sensors (machine). A city is a machine
of sorts. Multiple HUMACHINES interact in a smart city that itself has
sensors conducting surveillance. Thus sousveillance is a necessary element
to a continuation of this symmetrical feedback loop. Equiveillance (equality
between surveillance and sousveillance) is essential to the proper functioning
of a smart society, e.g. a smart city.

formed on clinically healthy participants. To mimic prosopag-

nosia’s deficits in facial perception, we used inverted face

images for the experiment. According to a face inversion

effect, clinical healthy individuals require a longer time and

more cognitive effort during the processing of upside-down

faces [18]–[21]. Neuroimaging revealed that recognizing in-

verted faces activates both face-selective and object recogni-

tion regions [22]. One hypothesis is that an inverted face is

processed as facial features rather than a holistic face [23].

This effect is similar to prosopagnosics’ disrupted structural

encoding, holistic processing and configural processing abili-

ties [3], [7], [24], [25]. Therefore, the challenge for clinically

healthy participants in processing inverted faces is analogous

to prosopagnosics in processing regular faces.

II. PRIVEILLANCE

Before proceeding forward with the technical details of our

implementation, we consider the broader intellectual landscape

in which our work exists.

A. Fractal nature of humachine communication

The human body may be regarded as a machine of sorts.

The mind and body together form a feedback loop. Efferent

nerves carry signals from the brain to the body. Afferent nerves

carry signals from the body to the brain.

Humans and machines can interact in a similar symbiotic

way. When we use a technology constantly, it becomes very

much a part of us, i.e. something we don’t think as being

separate from us.

Wearables, implantables, and other technologies that “be-

come part of us” form the basis for “bionic” or “cyborg” or

other forms of “humachine”. The humachine is created by an

almost inseparable feedback loop between human and machine

that is analogous to the feedback loop between the mind and

body. Thus there is a kind of self-similar (fractal) nature of

this symbiosis as illustrated in Fig. 2.

Multiple such humachines interact similarly in an enviro-

ment having many sensors. In smart cities we’re often under

surveillance, and it makes sense for us to sense, i.e. it makes

sense for humans to sense, as well as buildings and cars and

other entities sense. Thus human-sensors (sousveillance) are

as important (or more important) than a building’s sensors.
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Fig. 3: Whereas surveillance (oversight) is a well-known area of research and
practice, wearables give rise to the new phenomenon called “sousveillance”
(“undersight”). Surveillance and sousveillance intersect to define “Veillance”.
For example, a person wearing a camera might also be under surveillance
from cameras installed on or in a building. Each of these two “veillances”
interact with the concept of privacy. The interplay between privacy and
surveillance is known as security, wheareas the interplay between privacy and
sousveillance gives rise to a relatively new concept called “suicurity” (self-
care) [26]. PriveillanceTMuses VidescrowTMtechnology to achieve an optimum
in the competing space of surveillance, sousveillance, preservation of personal
privacy (of the wearer and others) and a fundamental human need to see and
understand the world around us.

Sousveillance is thus as necessary, or even more necessary

than surveillance.

We cannot legally deny a person the right to use a seeing

aid or a memory aid, and thus sousveillance cannot legally be

banned or prohibited.

Importantly therefore, we must design a system that pro-

vides privacy in the face of veillance. We have created an

“Equiveillance Working Group” and related series of projects

funded/commissioned by the McLuhan Centre for Culture

and Technology. The aim of this group is to understand the

interplay between privacy, surveillance, and sousveillance – a

project that our lab has been working on for many years. See

Fig. 3.

III. WEARABLE ASSISTIVE TECHONOLOGY FOR

PROSOPAGNOSIA

The goal of our design is to provide a wearable assistive

and training solution for prosopagnosia that acts as a ”visual-

memory prosthetic” [11]. The system is an Android application

that has two modes (an assistive mode and a training mode)

with an optional wearable hardware set.

A. Wearable Eyeset

The wearable hardware eyeset streams video input for the

real-time recognition mode. The application supports Android

phone’s built-in camera, external USB webcams and a custom

eyeset, as illustrated in Fig. 5.

The wearable eyeset consists of three cameras, eight infrared

LEDs, and three compute boards. The first camera on top of

the eyeset is an environment-facing PI V1 camera that streams

video from the user’s point of view with 5 megapixels still

resolution. Every frame of the video stream at the rate of
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Fig. 4: A data flow diagram showing two modes of operations and a three-part
system.
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Fig. 5: The wearable Glass Design for Prosopagnosia.

24 frames per second that contain faces are then captured

as the subject interacts with other people. The other two

infrared PI cameras placed below the eyeset with infrared

LEDs positioned around the eyeglasses frame are used for

tracking the eyes’ visual focus so that only the person that the

user is looking at gets detected in a crowd.

To facilitate the real-time mode during the user’s interaction

with multiple human subjects, an eye tracker for detecting

pupil positions was implemented using the other two infrared

cameras placed below the eyeset and hence the user’s pupil

positions are used for tracking the eyes visual focus. The

infrared LEDs that are positioned around the eyeglasses frame

shine light on the eye and the pupil for eye tracking. The

system targets a specific face from the environment based on

the wearer’s pupil position. The eye-tracker uses a custom

blob detection algorithm for pupil detection. To identify the

pupil, the system, first, masks the video frame at various

brightness threshold values. For each threshold value, all pixels

of higher brightness will be rendered to the color white, at

255, whereas other pixels are rendered to the color black, at

0. Secondly, each round of masking produces various contours

that are filtered by area and circularity. Each round of threshold

masking contributes to a “vote” on multiple contours that

qualify for the criteria of a pupil. In the end, the contour

that amasses the most “votes” from all threshold masking is

detected as the pupil. The coordinate of the pupil is compared

with the coordinate of ”the front direction” calibrated at the

beginning phase. Gazing directions are sent via a socket to the

real-time facial recognition system.

B. Real-time Face Recognition Mode

In real-time recognition mode, videos are streamed through

an environment-facing camera from the perspective of the

user. The camera captures the face of the person that the

user is interacting with. Fig. 6a is another implementation

of Fig. 5 on a sunglasses without eye-tracking cameras. The

face recognition module detects faces present in each frame

and generates unique face encodings. The face encoding is

compared with a list of encodings generated for the contacts

during the model training procedure. If a match is found, the

system provides an audio and a visual output of the predicted

human subject’s name and the accuracy rate. A sample of the

visual output is shown in Fig. 6b. If no matching contact is

found, the face recognition module will fire up the new contact

handling logic, as illustrated in Fig. 6c. The state-of-art face

detection model BlazeNet [27] and the face encoding mode

FaceNet [28] are used to perform the above functionalities.

(a) (b) (c)

Fig. 6: The user interface of the Android application operating in real-time
recognition mode. a) shows a USB webcam assembled on a sunglasses. b)
shows the real-time face recognition mode’s main interface during run time.
c) shows the interface for adding a new contact into the system.

Besides a recognition model for the contacts, the system

has a second model to handle the unknown faces, which

ensures that no duplicate unknown faces will be recorded in

the system. If the contact model detects an unknown face

during run-time, the system will compare this face encoding

with all the unknown records before saving the first image

frame of the unknown face. The second recognition model will

be trained to learn the new unknown face during run-time.
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Having a record to keep track of unknown faces promotes

seamless and uninterrupted social interaction for the user. This

allows users to add new people that they have just met as a

contact after greeting and conversation with the image that the

system has taken. A button is available in the interface of the

recognition mode for the user to click on to add contacts as

shown in Fig. 6c. The user needs to select at least one face

image from any album for the contact model to be trained on.

It is highly recommended for the user to select five face images

as it increases the prediction accuracy of the model [29].

The face profile management module displays a list of

contacts in the application. Once the user clicks into a dis-

played name, a face image with annotation(s) is shown on

the screen if available. Then the user can rename or edit

the annotations. This feature allows the user to record facial

features description for each contact, which can improve the

face-naming ability through the process of feature-naming,

recall, and memorization [4], [30].

C. The At-Home Self-Training Mode

The at-home self-training mode is an interactive interface

for users to learn and self test the face-naming association

using face images of the contacts selected during the real-

time face recognition mode. It is a standalone mode, which

the user can use either before or after the real-time mode.

The training design is inspired from a common methodology

used in prosopagnosia rehabilitation studies [3]–[6], [30].

The training process also involves a feature-naming step.

This additional task helps the user to focus on the face’s

internal features and improves the user’s structural encoding

ability. Previous studies have shown promising evidence for

improvement following the feature-naming task [3]–[6].

(a) (b) (c)

Fig. 7: The user interface of the Android application operating in self-training
mode. Fig. 7a shows a set of face images in a training round for training mode.
Fig. 7b shows a pop-up of a correct reference image when an incorrect choice
is made during training mode. Fig. 7c shows the training Mode on Android
App with the inverted face effect for the experiment.

One training session consists of fifteen rounds and for each

training round a set of ten face images from the contact list

shows up on the screen, as illustrated in Fig. 7a. In the training

session, the user is asked to identify the face that corresponds

to the name displayed at the top of the screen. When a wrong

face is selected, the correct face is displayed on the screen

until the user taps the screen to enter into the next round, as

shown in Fig. 7b. The user should name three face features of

the correct face before proceeding forward. When the correct

face is selected, the next round is displayed right afterwards.

The app tracks the accuracy of the user and the length of the

training session.

IV. EXPERIMENTAL PROCEDURES

A. Real-Time Face Recognition With Eye Tracker

As the accuracy of the pre-trained recognition models is

known, the performance of the eye tracker was tested in

real-time recognition mode. A series of experiments were

performed, in which social distance and face angle were

controlled. The subjects were ten undergraduate students: five

males and five females. The contact list was populated with 4

pictures of each subject, including one picture of their front

face with no facial expression, one picture of the subject

smiling, two pictures taken from 30◦ to the left, and to the right

respectively. The pictures were taken in the same environment

with the same camera resolution.

To test the performance of the eye tracker specifically, 2

subjects were standing side by side at a fixed distance to the

perceiver wearing the eye tracker, as demonstrated in Fig. 8.

For the first task, the subjects stood 2m away from the

perceiver and showed their front face to the perceiver. For

the second task, the two subjects stood 2m away from the

perceiver, but each subject faced 30◦ to a different side

showing their side face. For the third task, the subjects stood

0.5m away from the perceiver and showed their front face.

During each task, the perceiver kept his head still and

moved his eyes looking at each subject alternately for 10 trials.

The face recognition was expected to only detect the person

being stared at. The accuracy rate(the percentage of correct

recognition) and mismatch rate(the percentage that the wrong

subject not being stared at were recognized) were recorded.

3× 10 trials were performed by each pair of subjects. A total

of 150 trials were performed on 5 pairs of subjects.

B. At-Home Self-Training Mode

As for the experiment of the training mode, the participants

were ten clinically healthy people. To mimic the training

process of prosopagnosia patients, we displayed upside-down

photos during the training process, as illustrated in Fig. 7c.

Note that for the purpose of our experiment, we explicitly

replaced the real-time captured face images in the database

with celebrities’ faces. The reason that celebrity images are

used as the training images is that we want to mimic the

effect of prosopagnosia patients where they know the subject

as a person but have difficulty in processing the entire face.

Thus, celebrity faces are the optimal option as a control to

ensure that most participants know the training faces. A total

of 20 images were selected from Labeled Faces in the Wild
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Fig. 8: The participant position set up during the experiment for real-time
face recognition using the eye tracker.
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Fig. 9: The experiment floor set up, where δy represents the social distance
and δx represents the maximum distance apart

(LFW) face database. All images are face of celebrities, and

we carefully mixed races to avoid a cross-race effect [31].

The participants were divided into one experimental group

and one control group, where each group had five participants.

Each participant performed five blocks of ten trials of the

training using the interactive interface as described in section

III-C. For the experimental group, the participants were asked

to name facial features of the celebrities’ face when their

selection was wrong. The participant had five seconds to list

three facial features of the correct image. For the control

group, the participants did not perform the feature-naming task

where they learn the correct face for five seconds on their

own. The hypothesis is that face-feature naming allows the

participants to acquire a better holistic understanding of the

training face image.

V. RESULTS AND DISCUSSION

A. Results from the Facial Recognition Experiment

TABLE I: Table of Accuracy for Facial recognition

Accuracy [%]
Conditions Front 0.5m Front 2m Side 2m

Subject Pair 1 100.0 80.0 70.0
Subject Pair 2 100.0 80.0 90.0
Subject Pair 3 90.0 80.0 90.0
Subject Pair 4 100.0 90.0 70.0
Subject Pair 5 90.0 90.0 70.0

Average 96.0 84.0 78.0

Table I presents the accuracy of facial recognition tasks in

different conditions. Detection and recognition of a correct

subject count as a success, while a mismatch or failure to rec-

ognize the subject count as a failure. A generic finding is that a

closer distance of the subject’s face leads to better recognition

accuracy. According to the experiment results, the accuracy

of the real-time face recognition system is considerably high

because it is a probabilistic product of the accuracy for the

eye tracker and the face recognition system.

During the preparation of the experiment, we discovered

that the real-time recognition system has a range of effective

distance and angles. With respect to the environment-facing

camera’s field of view, the user’s maximum head movement

angle towards the human subject’s position is 22.60◦ for an

average social distance [32] [33] of 0.5m apart and 46.05◦

for camera’s maximum depth of 2m. The calculation for the

experiment distance setup is shown in Fig. 9.

B. Results From the Training Experiment

TABLE II: Training experiment accuracy for each trial

Trial No. (Accuracy [%])
Experiment Group 1 2 3 4 5

Experimental 1 73.3 100 100 100 100
Experimental 2 73.3 80.0 80.0 100 100
Experimental 3 80.0 73.3 80.0 80.0 86.7
Experimental 4 80.0 80.0 80.0 100 100
Experimental 5 73.3 73.3 93.3 100 100

Experimental Average 76.0 81.3 86.7 96.0 97.3

Control 1 66.7 73.3 73.3 73.3 86.7
Control 2 66.7 80.0 93.3 100 86.7
Control 3 73.3 86.7 93.3 93.3 100
Control 4 40.0 53.3 53.3 80.0 86.7
Control 5 80.0 80.0 73.3 100 80.0

Control Average 65.3 74.7 77.3 89.3 88.0

The primary outcome variables are reaction time and accu-

racy, which were recorded for each block of the face recog-

nition task. There were five blocks of training and assessment
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Fig. 10: A graph of the average accuracy of each trial. Each subject’s accuracy
data is presented in Table II.

for each participant. Table II and Table III shows participants’

accuracy and reaction time in each block of trials.

TABLE III: Training experiment reaction time for each trial

Block Trial No. (Reaction Time [s])
Experiment Group 1 2 3 4 5

Experimental 1 84.6 66.1 54.5 46.8 61.1
Experimental 2 119.0 79.5 57.9 67.6 37.2
Experimental 3 67.2 42.8 57.0 62.7 46.0
Experimental 4 109.0 46.0 65.1 47.6 67.1
Experimental 5 119.9 96.8 107.3 96.0 60.9

Experimental Average 99.9 66.2 68.4 64.1 54.5

Control 1 99.2 102.2 80.3 79.0 65.8
Control 2 75.3 87.7 59.2 67.7 39.7
Control 3 87.0 54.9 65.0 60.0 48.0
Control 4 149.0 86.6 135.6 101.9 83.3
Control 5 86.0 71.6 85.3 50.4 40.6

Control Average 99.3 80.6 85.1 71.8 55.5
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Fig. 11: A graph of the average reaction time of each trial. Each subject’s
accuracy data is presented in Table III

1) General Improvement: Fig. 10 and Fig. 11 shows the

average accuracy and reaction time in each trial. It can be

seen from our results that there was a general improvement in

accuracy and reaction time for both the experimental and the

control group along with training in later blocks as expected.

These results indicate that face recognition ability can be

improved on an inverted face. This is in accordance with the

results from previous studies that human facial recognition

ability is plastic, therefore, it is possible to improve facial

recognition ability through proper training.

2) Experimental Group vs. Control Group: The results also

indicate the experimental group performs better on average

than the control group both in terms of accuracy and reaction

time. From the participants’ self-reported surveys, participants

from the experimental group said they focused more on the

facial features of face images during the training procedure.

This help to explain why the experiment group had a better

performance. However, since the sample size is small, the

improvement could be caused by the fact that the participants

from the experimental group have better facial recognition

ability. Therefore, the conclusion that the feature-naming pro-

cedure helps rehabilitation still lacks a strong evidence.

3) Improvement Rate: Before the experiment, We expected

a faster increasing rate in performance from the experimental

group, to indicate that the feature-naming procedure is ef-

fective in improving facial memory and recognition ability.

However, this is not shown in our results. By fitting a line

into the data, it is shown that the two groups improved at

approximately the same rate.

VI. CONCLUSION

The paper presents an integrated solution consisting of a

real-time facial recognition system and an at-home training

system. The results from the experiments not only showed

the real-time face recognition mode has a relatively high

accuracy rate especially when the subject showed their front

faces to the perceiver at a closer distance, but also confirmed

the hypothesis that training can be used to improve facial

recognition performance.

VII. FUTURE WORK

A. Trials With Prosopagnosia Patient

Since the preliminary experiment was done on clinically

healthy participants. The assumption of our methods is built

upon the face inversion effect to mimic the difficulty in

recognizing faces for prosopagnosia patients. As the face

inversion effect diminished through incremental training, this

result may reflect the improvement of holistic face processing

skills. However, determining if the experimental results can

be generalized to prosopagnosia patients will need further

investigation.

The next step is to determine if the training approach could

be effective in a larger population of developmental prosopag-

nosics. A full-scale study investigating the actual effect of

the training mode needs to be performed on prosopagnosia

patients. The face-naming ability of developmental prosopag-

nosics needs to be assessed before and after training using the

system.
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B. Electroencephalography (EEG) Signals as Feedback

Brain activities in the face-selective region associated with

face recognition can be measured from event-related brain

potentials [34], [35]. We plan to incorporate EEG measure

as a form of feedback in the training mode for the users to

more precisely measure their improvement on face memory

and recognition abilities.

C. Face Flashback Training

One of the current rehabilitation studies involves fast face-

name flashback with rotated faces [11]. Our next step is to add

this feature into the training mode. we will repeatedly present

the new contact’s picture in an exponentially increasing time

(i.e. 1min, 2min, 4min, 8min). This periodical flashback

aims to improve the user’s ability to remember new contacts.
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