
Painting with the Eye: Understanding The Visual

Field of the Human Eye with SSVEP

Danson Evan Garcia, Kai Wen Zheng, Yi Liu, Yi (Summer) Tao, Steve Mann

MannLab Canada, 330 Dundas Street West, Toronto, Ontario, M5T 1G5

Abstract—We present an investigation into the relationship
between steady-state visually-evoked potentials (SSVEPs) and the
magnitude, distance, shape, and spatial location of the flashing
stimulus relative to the participant. We use a wearable electroen-
cephalography (EEG) device with the addition of an external
occipital electrode for the experiments. SSVEP responses are
extracted using the lock-in amplifier and fast Fourier transform
algorithms. We then map the responses to what the human eye
sees. Our experiments pinpoint the optimal range of stimulus
parameters required for stable SSVEP response, identify failure
states for flashing stimulus, as well as create a visual map, a
vidmap, of the participant’s ability to see. The results show that
locating the stimulus at the participant’s central vision elicits
stronger SSVEP response compared to the peripheral vision.

Index Terms—Signal processing, visual field interactions, elec-
troencephalogram (EEG), steady-state visually-evoked potentials
(SSVEP).

I. BACKGROUND AND INTRODUCTION

Vision is a critical ability that many rely on to maintain their

quality of life [1]. Its loss or impairment can greatly impact

an individual’s ability to perform critical and basic tasks [2].

Despite its importance, the study of human vision and percep-

tion is a difficult process. Data collected in relation to human

vision must either be gathered via testimony, activation taken

from cellular responses, or neuroimaging techniques [3], [4].

The former may be imprecise and unreliable, while the latter

two often requires expensive and dedicated equipment [5]–

[7]. The emerging relevance of wearable technologies can help

to bridge the gap between reliability and accessibility [8]–

[10]. Understanding of human vision can not only give us a

better grasp of our capabilities [11] but can also be applied

to create healthcare applications that help people with visual

disabilities (i.e. to monitor, or aid them in their visual tasks).

Applications include wearable facial recognizers for prosopag-

nosia patients [12], wearable low vision glasses for people with

blindness or partial vision to navigate [13], detect obstacles [14]

and read text [15]. These applications can help those with visual

disabilities reestablish social and cognitive functions.

If metaveillance is the sensing of sensing [16], [17], then

metavision is the vision of vision. Through understanding and

visualization of senses, human perceptual capabilities may be

revealed [18], [19]. Wearable devices provide extensions to and

are inextricably intertwined with our natural capabilities [20],

[21]. We aim to show how wearable EEG devices can realize

metavision and create a more holistic understanding of human

perception.

As metavision and visual field reconstruction can be used to

map out the responsive sections of the human eye, it may have

(a) An ayinography experiment. (b) Vidmap for 20 cm distance.

Fig. 1: a) is a photograph of the user taking the ayinography experiment. b) is
a single slice of the participant’s vidmap at 20 cm. The strength of the visual
response peaks at the focal point, then slowly falling closer to the edges.

applications in better understanding eye damage and vision loss.

Blurry and inexact vision can be mapped out, as a form of

visual testing, replacing the current testimonial based vision

tests. This technique can be used to help people with visual

disabilities for visual damage early detection, monitoring, and

future restoration.

A. Steady-State Visually-Evoked Potentials (SSVEP)

A technique used widely in EEG research is the steady-

state visually-evoked potential (SSVEP). SSVEP responses are

natural periodic responses elicited by flickering visual stimuli at

a specific frequency [6], [22]. Widely used in studies investigat-

ing spatial attention, these oscillatory responses are exhibited

from frequencies of 1-90Hz [23], [24] and are monitored using

EEG or functional magnetic resonance imaging (fMRI) [6],

[25]. However, steady and strong responses are only limited to

a certain frequency range with the optimal frequency typically

around 15Hz [24].

B. Human Visual Perception

The inverse square law states that the intensity of the

influence of a source is the source strength divided by the area

of the sphere. Therefore the influence of a light source twice

as far from the light source is spread over 4 times the area,

hence 1

4
the influence [26].

Objects can be seen by human eyes if they emit light

themselves or reflect lights. Cells in the retina detect lights

coming in the eyes. But vision is more complicated than just

light hitting and being detected by light-receiving cells, the

distance and spatial location of the stimulus relative to the

fovea, and illuminance are important as well. Piper’s law [27]

states that the product of perceived intensity and the square

root of the area is a constant, while Ricco’s law [28] states that

the product of area and perceived intensity is constant for the
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threshold of excitation in the fovea of the human eye. These two

different equations attempt to describe the eye’s perception in

different situations. A change of stimulus distance corresponds

to an increase or decrease in stimulus size and illuminance.

Prior studies have investigated the effect of stimulus distance

on SSVEP response [29], [30].

C. Ayinography

Ayinography is a technique used to display the bioveillance

flux of the human eye [18], [31]. Through a wearable EEG

device, we capture and read the mind’s interpretation of what

we see, ”mind’s eye”. Existing ayinographs uses an augmented

reality overlay system to create the visual field in three-

dimensional space. Such systems produce life-like representa-

tions of our mind’s eye, with values based on changes in height

and distance. However, creating a system from scratch may be

difficult as the skills required are diverse. In this paper, we

propose an ayinography that is purely done in software needing

only a monitor to plot a two-dimensional representation of our

mind’s eye. Each representation, or ”slice” of our visual field,

can be taken across the width and height of our visual field, and

also at different distances. The results may then be combined to

create a full mapping of our visual field in three-dimensional

space. Steve Mann proffers the resulting representation as a

vidmap from the Latin words videre (which means to see) and

mappa (which means a plane surface on which maps were

drawn).

II. METHODS

The EEG sensing device used during the experiments is the

Muse Meditation Headband by InterAxon Inc. This wearable

EEG device is shown in Fig. 2 with an extra electrode at-

tachment. When worn, the external electrode is placed at the

occipital lobe Oz position [32] to detect the SSVEP response.

Fig. 2: Left: Muse Headband with an external dry electrode. Right: Muse worn
with a dry electrode at Oz position.

A. Algorithms

1) Fast Fourier Transform: Fast Fourier Transform [33] is

an algorithm that computes the Discrete Fourier Transform

(DFT) [34] from a sequence of points. It is an application

of Fourier Analysis which converts a signal from its time

domain to its corresponding frequency domain representation.

The representation shows the power spectral components of

the signal at various frequencies. In this paper, we apply FFT

to detect the SSVEP response activations to various stimulus

frequencies. A pronounced FFT peak at the target stimulus

frequencies is indicative of a strong SSVEP response.

2) Lock-in Amplifier: A lock-in amplifier (LIA) is a device

that can find and boost a reference signal frequency while

eliminating other frequencies [35], [36]. An LIA device can

determine a signal from its noisy environment so long as the

reference signal is known. Modern LIAs typically implement

a second reference signal, which is 90◦ phase-shifted from the

original signal. This is to ensure the phase-independence of the

source signal and the reference signal. For our implementation

of a software-defined LIA, the raw EEG data is multiplied

by a reference wave at the target frequency. The same raw

EEG data is also multiplied by the 90◦ phase-shifted reference

wave. These two results are then passed through a Butterworth

low-pass filter to retrieve their LIA outputs. The magnitude of

the two low-passed outputs is obtained and averaged over the

specified time window.

B. Experimental Procedure

A particular stimulus frequency is selected based on the

SSVEP response data from the participant. To determine the

frequency in which the participant has a faster response while

having a steady activation throughout, a task where a flickering

stimulus window of a white and a black image. The flicker-

ing rate is set at frequencies from 5Hz to 20Hz at 0.5Hz

increments, because evidence from previous studies confirm

that steady and strong SSVEP response is typically around 15

hz [24]. At each increment, the stimulus flashes for 10 s with

a 3 s rest in between frequencies, this is to ensure the response

and desponse time for SSVEP response signals is captured in

the data. From our previous experiment, we found that this

response and desponse time varies from 1 s to 2 s, thus a 10 s

flash interval will allow us to see whether or not the SSVEP

response is steady, while the 3 s resting period will show the

full desponse duration for the frequency in question.
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Fig. 3: 8.5Hz frequency test graph from a user. The top is the raw EEG data.
The middle is the magnitude output using the lock-in amplifier algorithm. The
bottom is the FFT power spectral density (PSD) at 8.5Hz less noise using a 2-
second data capture window (i.e. 512 samples at 256Hz sampling frequency).

An example of an optimal SSVEP response is shown in

Fig. 3. From both the lock-in amplifier and FFT graphs, A

steady activation persists from 2 to 10 s. This is followed by

a linear decrease in response that coincides with the stimulus

ending at the 10 s mark. The linear decrease after 10 s represents

the response delay time. Activation graphs that are not optimal
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for the experiments typically show slower and more unstable

activation and deactivation.

Sample stimulus imagesPresentation of stimulus image

Fig. 4: A sample set of 400× 400 px stimulus images and the corresponding
presentation as a stimulus. The stimulus is flickered by changing between a
full black image and the stimulus image.

After a stimulus frequency is selected, a set of experiment

images are generated to test subjects’ visual field coverage and

his SSVEP response to different types of visual stimuli. These

images are then presented on a black screen as shown in Fig. 4.

Each stimulus image is 400 × 400 px, preferably about 1

9
to

1

12
of the total screen size. This size ensures that the image is

large enough to elicit SSVEP responses but small enough to be

within the user’s visual field. Changing the image resolution is

possible, especially if the screen resolution drastically changes

the image display size.

To induce flickering at a particular stimulus frequency, a

black foreground alternates with the stimulus image. A bluish-

green indicator is also present on the screen. The 3-pixel tall

indicator guides the user’s visual focus. Subjects are asked to

focus on and follow the indicator if it changes locations on the

screen.

As the attention of the user is focused on the indicator and the

stimulus, the user’s EEG data are collected and timestamped.

Each of the windowed stimulus images is also timestamped

as they appear on the screen. These ensure that the EEG data

can be mapped to a particular stimulus. The gathered EEG

data from the Oz position are then processed using either the

FFT method or the LIA method depending on the experiment’s

needs.

III. RESULTS AND DISCUSSION

A. Observations with Non-uniform Patterns

We examine how different stimulus patterns affect the re-

sulting SSVEP response at the stimulus frequency. In the

experiment, subjects are tested with four sets of stimulus

patterns as shown in Fig. 5. Fig. 5a and 5b were selected

to gain insight into the peripheral vision and the effects of

black and white pixels ratios on SSVEP. Additionally, we

chose Fig. 5c and 5d with expanding black and white circles

to measure the significance of the visual center in producing

SSVEP response. The ratio of black and white in each set of the

stimulus images changes in each frames. The stimulus images

are presented individually at the center of the screen with a

stationary center indicator. During the experiment, the subject

focuses their vision at the center of each stimulus image. The

stimulus image flickers for 10 s followed by a 3 s rest before it

changes into another image with increasing frame count.

(a) Frames 0, 7, 14, 20, 27, 34, 40. Vertical change in stimulus.

(b) Frames 0, 7, 14, 20, 27, 34, 40. Diagonal change in stimulus.

(c) Frames 0, 7, 14, 20, 27, 34, 39. Gradually increasing black circle.

(d) Frames 0, 7, 14, 20, 27, 34, 39. Gradually increasing white circle.

Fig. 5: Sets of stimuli used with non-uniform patterns. a) and b) are stimuli
that change from fully white to fully black then to fully white. c) and d) are
stimuli that have a circle with increasing size in the middle.

In each set of stimulus patterns, we consider two factors

that affect the level of SSVEP activation which is shown in

Fig. 6. First is the ratio of the white pixels in the 400× 400 px

stimulus window. This is directly related to the amount of

stimulus flicker the subject is exposed to since the stimulus

image alternates with a black image window. This ratio is

represented by the y-axis on the graphs. The second factor

is whether the white portion of the stimulus window overlaps

with the participant’s visual focus. This allows us to understand

the extent of a person’s visual acuity by seeing the effects of

peripheral and focused stimuli to SSVEP activation. The green

dots represent frames of images with white pixels that overlap

with participants’ visual focus and red dots otherwise.

The set of stimuli in Fig. 6a and 6b both have ratios of

white pixels that decreases to 0 and increases back to 1. The

variations in Fig. 6a has a constant rate while Fig. 6b has an

exponential rate attributed to two-dimensional nature of images.

The set of stimuli in Fig. 6c and 6d are inverse of each other.

Their variations are exponentially decreasing and increasing,

respectively.

The FFT PSD results from the experiment are shown in

Fig. 7. The two-dimensional heatmap represents the changing

FFT PSD for each set of stimuli with respect to the stimulus

frame number. The PSD results are in log-scale less than

the average noise floor obtained for a 10-second data capture

window.

From the graphs, correlations between the stimulus frequency

and SSVEP response frequency is clear. The peak SSVEP

activation is constantly at 8.5Hz. The activation intensity is

also noticeably related to the ratio of the white pixels present

and its overlap with the visual focus of the subject.

For both Fig. 7a and 7b, peak activation happens from frame

0 to 10 and from frame 30 to 40. Fig. 6a and 6b shows that those

frames correspond to frames where white pixels overlap with
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(a) Graph for stimulus set in Fig. 5a.
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(b) Graph for stimulus set in Fig. 5b.
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(c) Graph for stimulus set in Fig. 5c.
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(d) Graph for stimulus set in Fig. 5d.

Fig. 6: Percentage of white pixels in the stimulus window. The green points
represent when the middle point of the window contains a white pixel while
the red points show its absence. The x-axis is the frame number from the set
of stimuli in Fig. 5.
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(a) FFT PSD heat map for Fig. 6a.
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(b) FFT PSD heat map for Fig. 6b.
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(c) FFT PSD heat map for Fig. 6c.
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(d) FFT PSD heat map for Fig. 6d.

Fig. 7: Heat maps showing the FFT PSD in log-scale less than the average
noise floor from 5 to 20Hz for each set of stimuli in Fig. 5. Each stimuli is
flickered at 8.5Hz for 10 s with a 3 s rest in between. The FFT is taken using
a 10-second data capture window.

the subject’s visual focus. Additionally, the absence of stable

peak activation is visibly seen for the other frames. Based on

this, the sudden absence and presence of stable peak activation

indicates a non-linear relationship between the ratio of white

pixels to the SSVEP response. In other words, the effects from

the focal point overlap dominates the effects from the ratio of

the white pixels.

We further show the non-linear relationship with Fig. 7c

and 7d, which show decreasing and increasing peak activation

respectively. In these sets of patterns, there is a dramatic change

in color at the center pixel. In Fig. 6c, the center pixel changes

immediately from white to black after the first frame and vice

versa in Fig. 6d. In Fig. 7c, the largest drop in peak activation

happens at the 9th frame, where the ratio of the white pixels is
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Enlarging black circle

Fig. 8: Activation amplitudes at 8.5Hz for stimuli shown in Fig. 5c and 5d.
Orange line shows activation for Fig. 5c and blue line show activation for
Fig. 5d.

0.969. In Fig. 7d, activation is present from the 3rd frame with a

merely 0.002 white pixel ratio and continues to increase until it

reaches a peak at around the 8th frame, with the corresponding

white pixel ratio 0.024. Fig. 8 shows amplitude changes for

these two stimuli over frames. None of the two curves shown

are similar to ratio curves shown in Fig. 6a and 6b. Significant

increase and decrease happen very soon after the appearance

and disappearance of focal point pixel. Again, this indicates the

effects from the focal point dominate the effects from the ratio

of the white pixels.

B. Investigations with Ayinography

An ayinography is used to represent the degree to which

human eyes can see at specific points in space. In this ex-

periment, subjects place their visual focus at a stationary 3-

pixel tall indicator at the center of the screen. A flashing white

circle acts as the stimulus and this stimulus moves left to right

and top to bottom. At each stimulus location, the stimulus

flashes for a certain duration before moving to the next location

at a fixed step size. Once the EEG data are collected, the

data are processed using the LIA method. The corresponding

output is a 23 × 23 px vidmap of the participant’s field of

vision as determined by the SSVEP response. To understand

how distance affects the visual field, the subjects repeat the

experiments at varying distances of their eye from the screen.

The resolution of the human eye (the receptive field size) is

approximately one arc-minute in the center (the fovea) but the

size increases in peripheral vision [37]. Therefore, the fovea

has a higher resolution and should lead to a higher SSVEP

response to stimuli.

Fig. 9 shows the vidmaps of User A’s visual field starting

at 20 cm, and at 10 cm intervals afterwards, ending at 60 cm.

These vidmaps are then stitched together to form a three-

dimensional representation of the visual field, a 3-D ayino-

graph. As indicated by the two red lines, the activation in the

vidmap is more condensed at 20 cm and more spread out as

distance increased. However, as indicated by the white lines,
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as distance increases, the intensity decreases as the activation

gets more spread out, but we always have the highest activation

at the focal point and the activation at the peripheral drops as

distance increases from the focal point.

20cm 30cm 40cm 50cm 60cm

Fig. 9: Vidmaps at different distances from a screen using SSVEP response at
8.5Hz from User A. A 200 × 200 px circle stimulus traverses, left to right,
top to bottom, while the subject’s visual focus is at the center of the screen.
The stimulus flashes for 1 s at each location and moves by 40px step sizes.

To understand this phenomenon better, a second ayinograph

from another participant, User B was taken. Fig. 10 shows the

vidmaps at similar 10 cm intervals. Aside from having different

users, another difference between the two ayinographs is that

the stimulus flashes for 2 s at each location in Fig. 10 instead of

the 1 s in Fig. 9. The additional stimulus exposure time visibly

increases the intensity at the focal point and also the activation

spreads much faster.

20cm 30cm 40cm 50cm 60cm

Fig. 10: Vidmaps at different distances from a screen using SSVEP response
at 8.5Hz from User B. A 200×200 px circle stimulus traverses, left to right,
top to bottom, while the subject’s visual focus is at the center of the screen.
The stimulus flashes for 2 s at each location and moves by 40px step sizes.

The results from both ayinographs show that as distance

increases, the area of high activation at the center decreases

slightly. The increased distance also makes the SSVEP response

to spread out more from the center as the participant’s visual

field becomes larger.

C. Sketches with the Human Eye

In this experiment, the original image is presented on the

screen flashing at the stimulus frequency with a moving 3-

pixel tall indicator, which cues the subject’s visual focus. The

stimulus window slides across the screen left to right and top

to bottom. The stimulus window flashes for a fixed duration at

each location and moves to a new location with a fixed step size.

This way of stimulus presentation is analogous to the natural

eye movement pattern when reading.

Fig. 11 illustrates this experiment. From Fig. 11a, the entire

star image is flickered at 8.5Hz. The subject focuses on

(a)

(b)

(c)

(d)

Fig. 11: a) The entire star image is flickered at 8.5Hz while a stimulus window,
illustrated in red, is moving left to right and top to bottom. The window is
hidden and the participant only sees a 3-pixel tall indicator at the window
center where they have to focus. The 200× 200 px window moves every 2 s

by 40px step sizes. b) and c) are the target average bitmap and Gaussian
bitmap of a) respectively. d) is the lock-in amplifier reconstruction of a).

the center (marked as a red cross) of an imaginary stimulus

window, shown in red. The 200 × 200 px stimulus window

stays at a location for 2 s and then moves across the screen

as indicated by the arrows with a 40 px step size. Fig. 11b

is the resulting bitmap that takes the ratio of the white pixel

in a stimulus window and maps this ratio into a single pixel.

We refer to this as the target average bitmap. Fig. 11c is

the resulting bitmap that takes puts a higher weight on the

center of the window, resulting in each pixel being a Gaussian

representation of a stimulus window. We refer to this as the

target Gaussian bitmap. Once the EEG data is collected for the

experiment, the data is processed using the LIA method. The

resulting bitmap for the star is shown in Fig. 11d.

From the reconstruction of the star image, we can visibly

reason that our “mind’s” eyes follow the Gaussian bitmap repre-

sentation more closely than the average bitmap representation.

All the edges of the star are sharp and the image is crisp.

(a) (b) (c)

Fig. 12: A bullseye target image to illustrate further that our eye puts a larger
weight at the center of focus instead of average around a window. The entire
image is flickered at 8.5Hz with a 200×200 px window, moving every 2 s by
40px step sizes. a) and b) are the target average bitmap and Gaussian bitmap
of a) respectively. c) is the lock-in amplifier reconstruction.

To further investigate this visual property, we examine a
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much harder moving stimulus window reconstruction of a

bullseye target in Fig. 12. Fig. 12a clearly shows that the target

average bitmap is blurry to the point that it is hard to distinguish

the distinct black and white concentric areas. On the other

hand, Fig. 12b still shows distinguishable concentric blacks and

whites. The reconstruction in Fig. 12c is more similar to the

Gaussian bitmap. The averaged bitmap shows that the rings of

the target should be heavily blurred in the naive case, where

SSVEP response is equally distributed to all parts of the eye.

However, in reality, the resultant data shows clearly defined

rings and center dot. This resultant image much more closely

matches with the Gaussian bitmapping.

IV. CONCLUSION

In this paper, we investigated the relationship of SSVEP

response and the visual field of the human eye. We used FFT

and LIA algorithms to extract these responses and designed

experiments to study the effects of stimulus distance, shape, and

spatial location. In doing so, we discovered that the presence

of stimulus at the central vision greatly influences the SSVEP

response.
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