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Abstract—Existing physical fitness systems are often based
on kinesiology. Recently Integral Kinesiology has been proposed,
which is the integral kinematics of body movement. In this paper,
we apply integral kinesiology to the bench press, commonly used
in weight and resistance training. We show that an integral
kinesiology feedback system decreases error and increases time
spent lifting in the user. We also developed proofs of concept in
aerobic training, to create a social physical activity experience.
We propose that sharing real time integral kinematic measures
between users enhances the integrity and maintenance of resis-
tance or aerobic training.

I. INTRODUCTION

This paper presents the application of integral kinesiology

to weight training, resistance training, and the like.

The word “kinesiology” derives from the Greek words

“κινηση” (“kinisi”), meaning “movement”, and “λογος” (“lo-

gos”), meaning “reason”, “explanation”, or “discourse” (i.e.

“study”).

Kinesiology, is movement science, closely connected with

kinematics. Kinematics, is the study of the mechanics of

the motion of objects without considering the forces acting

on the objects, i.e. typically the pure study of distance (or

displacement) and its time-derivatives, speed (or velocity),

acceleration, jerk, jounce, etc.

Integral kinematics [1], [2], [3] is kinematics in which

we also consider the time-integrals of position, such as,

absement [1], [4] (the first time-integral of position).

Integral kinesiology is movement science that includes

position and its derivatives as well as its integrals. Integral

kinesiology includes measuring the absement (time-integral

of distance or time-integral of displacement) during exercise.

We proffer as state-variables of a phase space, momentement

(time-integral of momentum) and absement, upon which we

may apply machine learning. The first machine learning algo-

rithm to be applied to phase space was LEM, also known as

the adaptive chirplet transform[5].

The word “integral” derives from the same Latin language

root as the word “integrity”, and “integer”, meaning “whole-

ness” or “completeness”, and this is apt, as integral kinesiology

pertains to a certain kind of integrity through completeness

(i.e. including not just derivatives of position, but also integrals

of position).

The goal of this work is to develop a closed loop feedback

system to improve the integrity of exercise training. Im-

provement of integrity means improvement in exercise form.

Additionally, a system can helpfully alter behaviour in the

long term, so that the user can adapt their behaviour to the
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Fig. 1. Kinematics ordinarily involves the study of distance or displacement,

x, and its derivatives, dn

dt
x, ∀n ≥ 0. This gives us only half the picture. We

wish to also consider negative n, i.e. integrals (integral kinesiology), such as
absement

∫
x(t)dt = (d/dt)−1x(t).

feedback[6], [7], and thus optimize exercise even without the

use of the system[8]. We have also proposed pro-social uses

of this tool pertaining to sharing feedback amongst users

to facilitate initiation and maintenance of physical activity.

Therefore, our tools could greatly add to the amplification and

maintenance of regular physical activity providing closed loop

feedback in addition to social support (as suggested in [9], [8])

A. Background

Taking the derivative of a quantity is akin to acting on it

with a differential operator, i.e. (d/dt)n, where n gives us the

nth derivative. For velocity we have n = 1, for acceleration,

n = 2, for jerk, n = 3, for jounce, n = 4, and so on....

But this is only half the picture, i.e. we should also consider

negative values of n for the complete picture.

When n = −1, the result is a measurement known as

absement. Absement is the time integral of displacement or

distance, and thus can be used to measure total deviance (error)

from a baseline value that we wish to maintain. In weight

training, one baseline we wish to maintain is the pitch of

the barbell, which needs to stay level with the floor. Another

dimension we want to maintain for proper lifting is the yaw,

to keep the barbell steady from wrist rotations. In the current

study, we offered only one form of feedback on the absement

of pitch, while also simultaneously measuring the ongoing

absement in the yaw. Therefore, the measurement of error that

is of interest in the current study is the pitch absement. See

Fig. 1 We assume small deviation, so that sin θ ≈ θ for small

θ, so absement can be approximated by anglement.

B. Related Work

Exercise has traditionally used metrics like distance, speed,

and acceleration (for example see[10], [11]). Now, with in-

319

2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

978-1-7281-5686-6/19/$31.00 ©2019 IEEE
DOI 10.1109/SITIS.2019.00059



tegral kinesiology, absement is a vital metric to consider

when assessing the integrity of a lift during weight train-

ing. There are many existing ways to track motion, see,

for example[8][12], [13]. We track motion and provide real-

time feedback to users, such that they can correct their

behaviors, as suggested in[7], in much the same way that

bio-feedback has been previously used for rehabilitation[14].

Integral kinesiology can help with form during weight training,

by providing feedback to the lifter about their absement, as

deviation from maintaining proper form. As the absement in

prescribed movement grows, the user can be provided a cue

that creates an incentive toward proper form (or a disincentive

away from bad form). This cue takes the form of an indicator

that directly represents the current error.

In past works, integral kinesiology has been applied to the

training of core muscles using fitness games[2]. The MannFit

mobile app[3] was previously developed to give feedback

about absement to motivate a subject in a planking task, where

growth of the absement produced audio or visual feedback

such as warping of accompanying music, or simulation of

spilled water[2]. Users of the MannFit app experienced greatly

decreased absement during planking, suggesting a more stable

plank form. Also, training with this feedback system allowed

for the development of longer, sustained, low-absement plank-

ing sessions. We focused on monitoring absement during

barbell bench presses, to measure the error of the user whilst

also updating the user on their error through real time visual

feedback built into the bench press rack (see Fig.2). The time

integral of distance is the total error in deviation from zero

(straight), in position, during weight training. We use absement

as a measure of error across various axes. Here, the tilt of

the bar (the pitch, see Fig. 3) during lifting is measured and

relayed back to the user with visual feedback in real time.

Overall, the system presented here is an application of the

principles used in the previous MannFit mobile app[2]. The

mobile portion of the new system presented here (Fig. 4, 5, 6)

is implemented as an extension to the already existent MannFit

application[2].

II. INTEGRAL KINESIOLOGY RATIONALE IN WEIGHT

TRAINING

Integral kinesiology involves a combination of strength and

dexterity, and puts emphasis on simultaneously maintaining

and training strength and fine motor control. During weight

training, individuals must engage in proper lifting form to

avoid injuries, ensure the proper muscles are worked, and

maintain muscular symmetry of the body [15], [16]. A com-

mon problem for individuals who weight train with a barbell

is improper form in the yaw (maintaining the forces in the

rotation of the barbell), in the speed of the lift movement, and

in the pitch (maintaining the forces on the tilt of the barbell).

This is an issue at all levels of experience, but is especially true

for novice lifters[17]. Currently there is no quantitative way to

effectively measure bio-mechanical errors in performance on

a bench press. Qualitative feedback from a personal trainer is

helpful to the user in real time. However, access to personal

trainers is limited, and an observer (no matter their training)

simply cannot provide the speed and accuracy of instruction

that a real-time electronic closed-loop feedback system can.

Thus, integrated kinesiology applied to bench press can fill

a major need, providing easier access to precise real-time

feedback. Feedback helps individuals performing exercise[18].

In addition, the application presented here will also store

absement over time, across repetitions, sets, and workouts,

providing opportunities for long term review and assessment.

The bench press (see Fig.2) is one of the most common

weight training techniques. It is a compound workout that

primarily works the triceps brachii, pectoralis major, and the

anterior deltoid. During a bench press, lifters often experience

bad form (error) on multiple axes. One of the most common

errors that occurs is an asymmetry in arm extension whilst

performing the lift, causing an increase in absement in the

pitch [18] . This results in the barbell becoming unparalleled

with the floor, improper muscles being worked, and the

creation of muscular asymmetries, all of which can result in

injuries. Here, we can define error and infer asymmetry in

muscle recruitment by assessment of how parallel the barbell

is with the floor. Therefore, when users have a tilt in the bar,

the system records the absement of the tilt and simultaneously

provides real time visual feedback for the user to correct the tilt

of the bar during the lift. By storing absement across workouts,

the user is able to track these asymmetries over time.

III. HYPOTHESIS

We hypothesize that providing a participant using a bench

press with an absement-based feedback system of pitch (i.e.

feedback based on the tilt of the bar), there will be an

improvement in their overall form. A closed-loop feedback

system, where the participant is a part of the loop, will result in

lower absement and therefore better form. In addition, we take

simultaneous measures of absement in the yaw (rotation of the

barbell), while not offering feedback for it. We hypothesize

that having feedback about the pitch will reduce the absement

in pitch, but will be unlikely to improve (reduce) absement in

yaw.

IV. EXPERIMENTAL SETUP

The experimental setup consists of five main components:

an iron barbell, an MPU-6050 inertial measurement unit, a

Sequential Wave Imprinting Machine (S.W.I.M.)[19] (imple-

mented using a Teensy 3.2 microcontroller and an Adafruit

DotStar APA102 SMD LEDs), an Espressif ESP32 microcon-

troller, and a user-facing mobile Android application. A system

diagram is shown in Fig.4.

The system begins by having the MPU-6050 module

mounted on the barbell to measure the acceleration and angular

velocity along 3 axes (x, y, and z). Then, following the

flowcharts shown in Fig.5, the ESP32 microcontroller begins

by initializing the home position and resetting the LEDs

on the S.W.I.M. It also initializes the Bluetooth interface

for connectivity to mobile devices. The ESP32 then reads

acceleration and angular velocity and processes it to determine
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Fig. 2. A user of our integral kinesiology system performing a bench press. A
SWIM [19] (Sequential Wave Imprinting Machine) is used to guide the user
through the exercise by way of real-time visual feedback on form. Note the
rope which provides dissipative friction (energy loss) to dampen the inertia of
the weights. It is also connected to a spring, so that all 3 forms of impedance
are present.

pitch, yaw, and roll of the barbell relative to its home position.

Roll is defined as the rotation of the barbell about the axis

orthogonal to the ground. Yaw refers to the rotation of the

barbell about the axis projected along the length of the bar

bell. Pitch is rotation of the barbell about the last axis (See

Fig. 3). The ESP32 uses the pitch data to determine where

to position the displacement indicator light and the colour of

every pixel on the S.W.I.M. The S.W.I.M. is mounted on the

bench press rack at a location directly above the user’s head,

in line with the participant’s line-of-sight whilst performing

the exercise. The purpose of the S.W.I.M. is to provide visual

feedback to the user while they are exercising. The S.W.I.M.

displays an intuitive blue LED indicator that moves along the

S.W.I.M. in tandem with the tilt of the bar, where a tilt (and

thus form error) to the left moves the LED indicator to the

left, and a tilt to the right moves the LED right. A static white

LED is lit in the middle of the S.W.I.M. as a reference for

the center. Users are informed that the blue light provides

feedback about error in barbell tilt. Users are instructed to

keep the blue light as close to the center light as possible.

The user therefore is part of a closed loop feedback system

where they are able to correct for error by aligning the moving

blue LED with the white LED that marks the center. For the

purpose of demonstration, Fig. 2 shows a similar setup but with

the S.W.I.M. mounted directly on the barbell. This is used for

Fig. 3. Roll, yaw, and pitch with respect to the barbell

Barbell

MannFit Mobile App

+ Receive data over
Bluetooth

+ Calculate absement

+ Track user fitness
goals

Sequential Wave
Imprinting Machine

(S.W.I.M.)

+ Display on Adafruit
DotStar LED array

+ Provide visual
feedback to user

MPU-6050 Gyro +
Accelerometer

+ Measure angular
velocity along 3 axes 
(vx, vy, vz)

+ Measure acceleration
along 3 axes (ax, ay, az)

ESP32 Microcontroller

+ Set LEDs on S.W.I.M.

+ Calculate pitch, yaw,
roll from acceleration
and angular velocity

+ Transmit data over
Bluetoothetooth

vx,vy,vz
ax,ay,az

PWM

pitch,
yaw,
roll

Fig. 4. System Diagram of Experimental Setup

capturing long exposure photographs to visualize absement.

(S.W.I.M. lighting algorithms were modified in this example

for visual effect).

Finally, the ESP32 also transmits data regarding the ex-

perimental setup, pitch, yaw, and roll over Bluetooth to the

user-facing MannFit mobile application, shown in Fig. 6. The

MannFit mobile application handles data collection for this

experiment by logging the participant, trial number, number

of reps, weight on the bar, and providing controls for the

setup of the experimental system. Within the app, the pitch

and yaw values are integrated over time to determine the user’s

absement. This absement data is displayed on the screen and

also logged on the user’s phone. All data is stored locally on

the mobile device in the form of CSV files. The app also allows

the user to view their absement across multiple exercises and

see how their fitness and form improves over time.
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Recalibrate IMU and reset
LEDs

Start

Initialize Bluetooth

Read IMU values

Calculate pixel colours

Set pixel colours on LED
strip

ESP32 Microcontroller MannFit Mobile App

Start

Initialize Bluetooth and
connect to ESP32

Initialize 
elapsedTime = 0
absement = 0

Calculate absement by
integrating yaw, pitch, roll

over elapsedTime

Receive and
decode pitch, yaw,

and roll 
from ESP32

Write absement and
user data to logs

Reset elapsedTime since last
IMU update to zero

Transmit pitch, 
yaw, and roll 
values over
Bluetooth

Fig. 5. Flowchart of ESP32 Microcontroller and MannFit Mobile App

Fig. 6. MannFit Mobile app which handles data collection and records
absement.

V. EXPERIMENT

Participants (n=6; n=2 female) were asked to perform four

sets of five reps on the bench press. For two of these sets,

the participant received no visual feedback. For the other

two sets, each participant performed the bench press with

visual feedback on. The order alternated in which the par-

ticipants performed with or without a feedback system and

the alternation in trials was counterbalanced and randomized

across subjects. The weight that the participants used was self-

selected but stayed consistent across repetitions within subject.

All subjects were instructed to pace their movements to a

time interval of three seconds on the down-movement, and

three seconds on the up-movement. The time for each lift

session was recorded and the absement was normalized to the

overall time for each lift session (absement/time). Measures of

absement in pitch and yaw were recorded for each of the four

lift sessions independently, and compared across conditions

and between subjects. Therefore the absement measures re-

ported are absement/time, rather than raw absement measures.

Within each participant, absement data from both sets without

feedback were averaged and compared to the data collected

from both sets with feedback.

We compared absement between every session in which

participants had feedback compared to every session without

feedback. Comparisons in absement between feedback on vs

feedback off sessions were made using unpaired t-tests. This

data is shown as the first graph in each of the three results

figures (see Figs.7, 8, 9 A).

Because the participants in this study varied from novice

to regular bench press users we wanted to also compare the

general effect of visual feedback on absement and time to

complete the set within each participant. For this we used

paired t-tests. This data is shown in the second graph in each

of the 3 results figures (see Figs.7, 8, 9 B).

One-way repeated measures ANOVA were used to assess if

there was a change over the four lifting sets in overall time,

absement in pitch, and absement in yaw. This data is shown

in the third graph in each of the 3 results figures (see Figs.7,

8, 9 C).

VI. RESULTS AND DISCUSSION

An unexpected and interesting observation was seen in the

increase in time taken to complete five reps when feedback

was provided. Despite all participants being instructed to pace

their lifting (three seconds on the down-movement, and three

seconds on the up-movement), we found that when comparing

the amount of time to complete the sets with feedback on vs

off, feedback significantly increased the time to complete the

lift set (t22=2.5, p=0.01) (see Fig.7). This effect was further

replicated within subjects, as when averaging the time taken to

complete feedback on vs feedback off sessions, feedback off

sessions were significantly faster to complete than feedback on

sessions (t5=3.8, p=0.01). Considering the time to set comple-

tion without the feedback system, participants completed their

five reps significantly faster compared to when the visual feed-

back system was engaged across sessions (F(5,15)=7; p=0.03).
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Fig. 7. Time to complete 5 repetitions. A) Each dot on the plot represents
the total time to complete the 5 repetitions over a lift session in the feedback
on or feedback off conditions. B) Within subjects having the feedback on
increased the total time to complete the lift session. Each line and connected
dots represent a single subject’s average of the feedback on or feedback off
sets. C) Across the four lift sessions each time the feedback was on, most
participants had longer lift times when feedback was on vs. off, having more
lift sessions did not speed up subsequent lift sessions if feedback was on.
Each line and connected dots represent a single subject’s measurements for
each of the 4 sets*=p<0.05

We speculate that participants were taking more time to focus

on the visual feedback and correct their movements when

using the visual feedback system compared to having no visual

feedback. Having no visual feedback may allow participants to

focus on doing the reps within the requested pace, while also

being prone to error in their form. Anecdotally, participants

did comment on the lights in the feedback system and the

behaviour of these lights as capturing their attention.

This effect of longer time to complete repetitions whilst

providing visual feedback may also confer benefits to the

bench press exercise regime. Resistance training performed

with a normal number of repetitions but an increase in time

under tension has been shown to increase muscle recruitment

while decreasing muscle fatigue [20]. Thus taken together,

our current closed loop integrated kinesiology visual feedback

system may also include unexpected improvements in muscle

recruitment and endurance during the lift session.

Given the discrepancy in time duration between conditions,

we wanted to control for the total errors made over time, and

therefore divided the total absement by time taken to complete

five reps. This creates a metric that gives us a measure of

error relative to the total time under tension that the participant

experienced.

Receiving feedback about the absement on pitch signif-

icantly improved the absement measures in sessions when

feedback was on compared to when feedback was off (t22=2.2,

p=0.03). When looking at changes in absement within sub-

jects, there was one subject that did not show improvements

when feedback was on vs when feedback was off, however,

the rest of the subjects showed trends for within subject

improvements in pitch absement when receiving feedback

(t5=2.2, p=0.07). Across all 4 sets, absement did not seem to

improve significantly over lift sessions (F(5,15)=2, p=0.12).

However, there was a general trend that sets performed when

feedback was off had increased pitch absement, which is

otherwise suppressed when the feedback was on.

Also of interest was the performance measures in domains

in which participants were not receiving feedback, the abse-

ment in yaw. Overall, across feedback on vs feedback off

sets, absement in yaw tended to be higher in the feedback
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Fig. 8. Absement in pitch over time. A) each dot on the plot represents
the total absement in pitch over time over a lift session in the feedback on or
feedback off conditions. B) Within subjects having the feedback on decreased
the absement in pitch. Each line and connected dots represent a single subject’s
average of the feedback on or feedback off sets. C) Across the four lift
sessions, each time the feedback was on, most participants decreased absement
in pitch compared to when feedback was off. Each line and connected dots
represent a single subject’s measurements for each of the 4 sets. *=p<0.05p g j p
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Fig. 9. Absement in yaw. A) each dot on the plot represents the total
absement in yaw over time over a lift session in the feedback on or feedback
off conditions. B) Within subjects having the feedback on increased the
absement in yaw. Each line and connected dots represent a single subject’s
average of the feedback on or feedback off sets. C) Across the four lift
sessions, each time the feedback was on, most participants increased absement
in yaw compared to when feedback was off. Each line and connected dots
represent a single subject’s measurements for each of the 4 sets. *=p<0.05

on sets (t17=1.8, p=0.09). When feedback sets were averaged

and compared within subject, there was significant increases

in yaw absement when feedback was on (t4=3.15, p=0.03).

Across all 4 sets, there was not a decrease in the yaw absement

(F1,7=2.1, p=0.17). That being said, it is clear, from visual

inspection of Fig. 9 C, that absement in yaw tended to

decrease across sessions in some users.

This experiment is a powerful proof of concept to show

the potential of closed loop feedback systems during weight

training. However, we also tell a cautionary tale, that receiving

feedback on one type of error (the pitch) improves upon that

domain but may overcompensate, causing other aspects of

the lifting action to suffer, as we saw with the increase in

absement in yaw when the user receives feedback about the

pitch. That being said, it seems that this effect of feedback on

pitch absement impaired yaw absement in only some users,

anecdotally the novice users. In general, all users showed

improvements in yaw absement during the third and fourth

lift session, suggesting that feedback on pitch may allow for

overall improvements in lift form, once the user habituates to

the visual feedback interface. Therefore, including additional

feedback during the lift session may be of use to optimize

training of the user for best lifting form. However, in pilot

test sessions that included simultaneous feedback on yaw

and pitch absement, users found it difficult to correct and

concentrate with multiple streams of information at once. So

there may be some benefit to limiting the feedback to one

integral kinematic axis at-a-time, while also simultaneously
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measuring other integral kinematic components to assess for

areas of improvement. The current experimental setup and

mobile app will allow for feedback of one or more axes, and

this is something that a user can control from the app interface

if they want to change the type or amount of feedback they

are getting.

The data presented here was collected in one day. The

truer potential of a feedback system is in its ability to train

a user in good form with long lasting adaptable behavioural

changes, as seen in[6]. This type of training requires time

to develop muscle memory to perfect lifting form. Thus, a

more comprehensive experiment will be conducted to show

the ability of a feedback system to train a user in proper

form, while providing interpretable feedback for multiple axes

of absement (pitch, yaw, and roll). This new experiment will

involve testing users over a period of a month, while the

user has electromyographic recordings ongoing with the lift

sessions, where half of the participants receive no feedback

and the other half do receive feedback. Data will be collected

daily to assess for changes in absement as a user trains with

or without feedback. The longevity of the feedback effects

will be explored. That is, if, after a month of training, the

user experiences significantly decreased absement scores with

the presence of a feedback system, we would like to assess if

the reduction in absement is maintained when the user stops

training with visual feedback. In addition, it would be of

interest to note if receiving feedback has any effect on the

tension, fatigue or exertion of the muscles during the lift, as

would be hypothesized from our findings in combination with

the findings that increased time under tension increases muscle

recruitment and endurance [20].

VII. GOING FURTHER: BIG DATA AND COLLABORATIVE

WEB-BASED INTEGRAL KINESIOLOGY THROUGH IOT

A. Collective experience fitness systems

Weight training is typically a solo endeavour (i.e. one

person actually experiencing the lifting, at any given time,

even though there is often a spotter or a “buddy system”

involved). We consider now a more inclusive form of Integral

Kinesiology based on intelligent machines working in tandem

[21]. We know, for example, the amplification of benefits of

physical activity when exercising collectively. For example,

cross-country runners, often run side-by-side, matching pace,

and often breathing rate, and in doing so form a partnership

and build comradery, while gaining knowledge of others

actions in tandem with self [22]. For example, we proffer here

two exercise bicycles connected in such a way as to simulate

tandem cycling, i.e. to simulate a collective experience of

cycling together, even among two people who are separated

geographically. These may be friends, or even complete

strangers. In a first prototype, we electrically connected two

machines together, (using a wired approach for the prototype),

so that when one machine runs, it alleviates load on the other

machine. We chose machines having a Lundell generator, so

that they are easy to connect, and mounted binding posts on

the machines so that they could be linked by banana cables or

Fig. 10. Exploring the interconnection between electric machines. Here
are two Lundell machines, one in a stationary bicycle and the other hand-
cranked. The hand-cranked machine features a rotary SWIM (Sequential Wave
Imprinting Machine).

wires. Fig. 10 is a photograph showing two Lundell generators,

one in a bicycle and the other hand-cranked, as an exploration

of this concept.

In the next prototype, we connected machines using a Lab

Quest MINI analog-to digital-converter, current sensors, and

temperature probes for system monitoring 1, and devised an

adiabatic calorimeter to capture work (energy) performed into

the heating of water (this was a first-step toward a rowing-

based ergonometer to be described in what follows).

Another example used here is rowing. Rowing involves

powerful yet fine motor control, requiring strength (power),

stability, and control (dexterity). In this regard, rowing is an

ideal example of a sport that fits well within the integral

kinesiology framework. Rowing is a collaborative sport done

outdoors “On The Water” (OTW). Unfortunately when rowers

train indoors, on separate machines, there is less teamwork

or physical connectedness. Fortunately, though, when indoors,

1Authors wishes to thank Dr. Lawrence of BSS for the use of the
measurement equipment used in the calorimetry experiments.
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Fig. 11. Calibration procedure with known input to determine the temperature
profile and system losses, time constants, etc., which the machine learning
model adapts to.
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Fig. 12. Proposed instrumented rowing machine with a body of water
in an adiabatic calorimeter for damping and sensing, a dynamo for group
interaction, and a computer for IoT (Internet of Things) and web-based
connectivity.

rowers may use use a water-based ergonometer. Ergonometry

is itself an integrative measure, i.e. it integrates power (energy

is the integral power). We propose a device and system that

allows multiple rowers to row all at once, and thus removes the

element of disconnectedness that we otherwise have in a gym

setting. This can be done in small groups like two, or four, or

eight rowers in one gym or in separate gyms across the globe.

When OTW rowing, the water forms the “bridge” that unites

the team members, i.e. they are connected hydraulically. Each

oar affects the other oars, and here we propose to simulate

this “water bridge”.

We implemented an ergonometer within existing exercise

machines and gym equipment by designing a water-based

adiabatic calorimeter to capture and quantify energy generated

by frictional (resistance) training. We calibrated the system

with a known input (Fig 11), to establish the efficiency, losses,

etc., using a simple machine learning model for the calibration

profile.

This system is ideally suited to machines that already use

fluid damping, such as fluid-based rowing machines. See

Fig. 12 for a diagram showing system configuration. This form

of hydraulic collaboration can also be done at larger scales,

e.g. in the context of “Big Data”, e.g. huge numbers of rowers

around the world rowing at the same time . With millions of

users tied into one system via IOT (see next section) we can

capture large datasets for analysis [23][21].

B. Expansion via Internet of Things

In order to facilitate the generation and storage of vast

amounts of data, the current MannFit system would need to

be redesigned. At a high-level, the new design would follow a

three-layer IoT architecture shown in Fig. 13 [24], [25]. The

perception layer consists of the barbells, rowing machines,

other sporting equipment and their attached sensors. The

network layer is comprised of microcontrollers with integrated

network cards, chip modems, etc. and computers/workstations

connected to the sensors. These devices will then connect via

Application Layer

Network Layer

Perception Layer

Microcontroller

Cloud Database

MannFit Mobile App

(Wi-Fi, 3G, 4G, LTE, 5G, etc.)

Computer

Sensors
(accelerometer, ergonometer, etc.)

Fig. 13. Proposed three-layer IoT architecture of the future MannFit system.

Wi-Fi, 3G, 4G, LTE, 5G, etc. to a cloud database. All data will

be stored in the cloud. Finally at the application layer, mobile

devices running the MannFit mobile app will retrieve data

from the cloud and provide fitness monitoring services to the

user. We proffer to use the emerging Web of Things Testbed

[26] to promote rapid development of the new MannFit system.

This, as a whole, would effectively create an IoT sensing as-

a service platform [27], where information about the sensory

environment is provided to the user in a packaged service. This

system would work as an IoT mesh network, with end-nodes

(user exercise equipment) intercommunicating closely within

gyms, cities, and the world (likely utilizing efficient IoT mesh

techniques such as MQTT Middleware [28]) and classical

client-server communications methods to sync with the cloud.

A majority of the existing MannFit infrastructure can be reused

in the proposed IoT architecture. The only major change

would be replacing the existing Bluetooth interface on the

ESP32 microcontroller with a network interface. Fortunately

the ESP32 microcontroller already has the necessary hardware

to facilitate both Bluetooth and Wi-Fi communications. Thus

the required changes are purely software, allowing a cost-

efficient improvement.

C. Inverses of Big Data and IoT

We proffer the concept of a “SecuritreeTM” with 3 branches:

(1) public safety; (2) security; (3) organizational efficiency, as

we would often see in “health surveillance”, but we proffer

also roots of the tree for “health sousveillance”: (1) personal

safety; (2) suicurity[29]; (3) personal efficiency, e.g. using

“little data” like distributed blockchain, in an “Internet of

People”.
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VIII. CONCLUSION

We proposed integral kinesiology for weight training. Par-

ticipants were representative of bench press users from novice

to experienced. We found that introducing integral kinesiology

to weight training reduced the overall absement in pitch

over time, while also increasing total time taken to complete

repetitions of a bench press, and also increasing absement

in other axes of the barbell lift (i.e. yaw). Together, these

findings suggest that a closed loop feedback system for weight

training may provide benefits to the user, increasing their time

spent under tension and decreasing the errors made during

weight training. It also offers insight into the potential utility

of feedback systems that deliver multiple levels of feedback

to optimize the lift and minimize error in proper form. Based

on the promising results of the closed loop feedback system

within individual users, we developed additional applications

for integral kinesiology feedback for exercise in larger groups.

We propose that real time feedback systems, individualized or

used collectively, increase initiation, maintenance, and social

benefits to exercise regimes, and thus benefit human health,

and eHealth monitoring[21].
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