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The Cybernetic Chordic Keyer:
A simple low cost high performance multikeyer for

wearable computers or the like
Steve Mann, NINLF (US), VA3NLF (Canada)

Abstract— Humanistic Intelligence is intelligence that
arises in a natural cybernetic way, through having a con-
stancy of user—interface, by way of an “always-ready” com-
puter system. This article describes a handheld keyboard
that can be easily custom built for each user, and can be
used while doing other things such as jogging, running up
and down stairs, or the like. It can also be used to secretly
type messages while standing and conversing with other peo-
ple in a natural manner.

Keywords— Keyboards, Keyers, Input devices, Human fac-
tors, Mobile communication, Cybernetic sciences, Human-
istic Intelligence, Consumer electronics

I. INTRODUCTION

HAT is described, is a simple conformable keyboard,

for use with computer systems that work in ex-
tremely close synergy with the human user. This close
synergy is achieved through a user-interface to signal pro-
cessing hardware that is both in close physical prozimity to
the user, and is constant.

The constancy of user-interface (interactional constancy)
is what separates this signal processing architecture from
other related devices such as pocket calculators and Per-
sonal Digital Assistants (PDAs).

Not only is the apparatus operationally constant, in
the sense that although it may have power saving (sleep)
modes, it is never completely shut down (dead as is typi-
cally a calculator worn in a shirt pocket but turned off most
of the time). More important is the fact that it is also in-
teractionally constant. By interactionally constant, what
is meant is that the inputs and outputs of the device are
always potentially active. Interactionally constant implies
operationally constant, but operationally constant does not
necessarily imply interactionally constant. Thus, for exam-
ple, a pocket calculator, worn in a shirt pocket, and left on
all the time is still not interactionally constant, because it
cannot be used in this state (e.g. one still has to pull it out
of the pocket to see the display or enter numbers). A wrist
watch is a borderline case; although it operates constantly
in order to continue to keep proper time, and it is conve-
niently worn on the body, one must make a conscious effort
to orient it within one’s field of vision in order to interact
with it.
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II. WEARCOMP AS AN INTERACTIONALLY CONSTANT
APPARATUS

The WearComp apparatus of the 1970s and early 1980s
was an example of an interactionally constant wearable
multimedia computer system for collaboration in computer
mediated reality spaces.

Physical proximity and constancy were simultaneously
realized by the ‘WearComp’ project! of the 1970s and
early 1980s (Fig 1) which was a first attempt at building
an intelligent “photographer’s assistant” around the body,
and comprised a computer system attached to the body,
a display means constantly visible to one or both eyes,
and means of signal input including a series of pushbutton
switches and a pointing device (Fig 2) that the wearer could
hold in one hand to function as a keyboard and mouse do,
but still be able to operate the device while walking around.
In this way, the apparatus re-situated the functionality of a
desktop multimedia computer with mouse, keyboard, and
video screen, as a physical extension of the user’s body.
While the size and weight reductions of WearComp over
the last 20 years, have been quite dramatic, the basic qual-
itative elements and functionality have remained essentially
the same, apart from the obvious increase in computational
power.

An important, and so far unpublished, aspect of the
WearComp has been the keyer, which serves to enter com-
mands into the apparatus. The keyer has traditionally been
attached to some other apparatus, such as a flashlamp, or
lightcomb, so that the effect is a hands free data entry de-
vice (hands free in the sense that one would need to hold
onto the flashlamp, or the like, anyway, so no additional
hand is needed to hold the keyer).

The operation of a keyer takes place over seven stages.

III. THE SEVEN STAGES OF A KEYPRESS

The original keyer had five keys, one for each of the 4
fingers, and a fifth one for the thumb, so that characters
were formed by pressing the keys in different combinations.
The computer can read when each key is pressed, and when
each key is released, as well as how fast the key is depressed.
The velocity sensing capability arises from using both the
naturally closed (NC) and naturally open (NO) contacts,
and measuring the time between when the common contact
(C) leaves the NC contact and meets the NO contact.

IFor a detailed historical account of the WearComp project, and
other related projects, see [?][?].
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(a) (b)

Fig. 1. Early embodiments of the author’s original “photographer’s assistant” application of Personal Imaging. (a) Author wearing
WearComp?2, an early 1980s backpack-based signal processing and personal imaging system with right eye display. T'wo antennas operating
at different frequencies facilitated wireless communications over a full-duplex radio link. (b) WearComp4, a late 1980s clothing-based
signal processing and personal imaging system with left eye display and beam splitter. Separate antennas facilitated simultaneous voice,
video, and data communication.

Fig. 2. Some of author’s early keyer inventions from the 1970s (“keyboards” and “mice”) for WearComp: (a) input device comprising
pushbutton switches mounted to a wooden lamp pushbroom hand-grip; (b) input device comprising five microswitches mounted to the
handle of an electronic flash. A joystick (controlling two potentiometers), designed as a pointing device for use in conjunction with the
WearComp project, is also present.
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Fig. 3. The seven stages of the keypress: A Attack is the
exact instant when the first switch is measurably pressed. (e.g.
when its common moves away from its first throw if it is a double
throw switch, or when the first switch is closed if it is a single
throw switch). D Delay is the time between Attack and when
the last switch of a given chord has finished being pressed. Thus
Delay corresponds to an arpeggiation interval (ARPA, from Old
High German harpha, meaning harp, upon which strings were
plucked in sequence but continued to sound together). This Delay
may be deliberate and expressive, or accidental. C Close is the
exact instant at which the last key of a desired chord is fully
pressed. This Closure of the chord exists only in the mind (in
the first brain) of the user, because the second brain (e.g. the
computational apparatus, worn by, attached to, or implanted in
the user) has no way of knowing whether there is a plan to, or
plans to, continue the chord with more switch closures, unless all
of the switches have been pressed. S Sustain is the continued
holding of the chord. Much as a piano has a sustain pedal, a
chord on the keyboard can be sustained. Y Yaled is the opposite
of delay (yaled is delay spelled backwards). Yaled is the time
over which the user releases the components of a chord. Just as a
piano is responsive to when keys are released, as well as when they
are pressed, the keyboard can also be so responsive. The Yaled
process is referred to as an APRA (OIGGEPRA), e.g. ARPA (or
arpeggio) spelled backwards. O Open is the time at which the
last key is fully (measurably) released. At this point the chord is
completely open and no switches are measurably pressed.

There are seven stages associated with pressing a com-
bination of keys. (See Fig 3.)

It should be noted that the Close, Sustain, Release pro-
gression exists only in the firstbrain of the user, so any
knowledge of the progression from within these three stages
must be inferred, for example, by the time delays.

Arbitrary time constants can be used to make the key-
board very expressive, e.g. characters can be formed by
pressing keys for different lengths of time. Indeed, a single
key alone could be used to tap out Morse code, so that
only one key would really be needed, if we were willing to
use arbitrary timing information. Two keys would give the
iambic paddle effect, similar to that described in a Jan.
12, 1972 publication, by William F. Brown, U.S. Pat. No.
3757045, which was further developed in U.S. Pat. No.
5773769, so that there would be no need for a heavy base
(it could thus be further adapted to be used while worn).

Another example of time dependent keyboards include
those with a Sustain feature, such as those with the well—
known “Typematic” (auto repeat) function of most modern
keyboards. A key held down for a long time behaves dif-
ferently than one pressed for a short time. The key held
down for a short time produces a single character, whereas
the key held down for a long time produces a plurality of
the same character.

Some problems arise with time dependent keying, how-
ever. For example, a novice user typing very slowly may

accidentally activates a timing feature. Although many in-
put devices (e.g. ordinary keyboards and mice, as well as
ordinary iambic paddles) have user adjustable timing con-
stants, the need to adjust or adapt to these constants is an
undesirable feature of these keyboards.

Moreover, there are problems and issues of velocity sens-
ing, which is itself a timing matter. Some problems associ-
ated with velocity sensing include the necessity of selecting
a switch with less deadband zone (“snap”) than desired,
for the desirable amount of tactile feedback. There were
some other undesirable attributes of the velocity sensing
systems, so in this paper, the non—velocity sensing version
will be described for simplicity.

Without using any timing constants whatsoever and
without using any velocity sensing, nor Sustain, nor mea-
surement of the timing in the Delay and Yaled stages),
(Fig 3) a very large number of possible keypresses can still
be attained.

Consider first, for simplicity, a two key keyboard. There
are four possible states: 00 when no keys are pressed, 01
when the least significant key (LSK) is pressed, 10 when
the most significant key (MSK) is pressed, and 11, when
both are pressed. It is desired to be able to have a rest
position when no characters are sent, so 00 is preferably
reserved for this rest state, otherwise the keyboard would
be streaming out characters at all times, even when not in
use.

In a dynamic situation, keys will be pressed and released.
Both keys will be pressed at exactly the same time, only
on a set of measure zero. In other words, if we plot the
time the LSK is pressed on the abscissa, and the time that
the MSK is pressed on the ordinate, of a graph (See Fig 4),
each keypress will be a point, and we will obtain a scatter-
plot of keypresses in the plane. Simultaneity exists along
the line tg = t;, and the line has zero measure within the
plane. Therefore, any symbol that requires simultaneous
pressing of both keys (or simultaneous release of both) will
be inherently unreliable, unless we build in some timing tol-
erance. Timing tolerances require timing information, such
as a timing constant or adaptation, so for now, for simplic-
ity, let us assume that such timing tolerances are absent.
Therefore, let us only concern ourselves with whether or
not the key presses overlap, and if they do, let us only con-
cern ourselves with which key was pressed first, and which
was released first.

This limitation greatly simplifies programming (e.g. for
programming on a simple 6502 microprocessor or the like),
and greatly simplifies learning, as the pace from novice to
expert does not involve continually changing timing pa-
rameters and various other subjectively determined timing
constants. Accordingly, without any timing constants or
timing adaptation, we can, with only two switches, obtain
six possible unique symbols, not including the Open chord
(nothing pressed). (See Fig 5.)

The operation of the cybernetic keyer is better under-
stood by way of a simple example, illustrated in Fig 6.

The timespace graph of Fig 4 is really just a four di-
mensional time space collapsed onto two dimensions of the
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Fig. 4. Cybernetic keyer timing: T'wo keys would be pressed or
released at exactly the same time, only on a set, denoted by the
line tg = t1, which has measure zero in the (to,¢1) plane, where
tp is the time of pressing or releasing of SWITCH 0, and ¢; is
the time of pressing or releasing of SWITCH 1. To overcome
this uncertainty, the particular meaning of the chord is assigned
based ordinally, rather than on using a timing threshold. Here,
for example, SWITCH 0 is pressed first and released after press-
ing SWITCH 1 but before releasing SWITCH 1. This situation
is for one of the possible symbols that can be produced from this
combination of two switches. This particular symbol will be num-
bered (4) and will be assigned the meaning of REW (Rewind).

page. Accordingly, we can view any combination of key
presses that involves pressing both switches within a finite
time, as a pair of ordered points on the graph. There are
six possibilities. Examples of each are depicted in Fig 7.

IV. THE PENTAKEYER

With three switches instead of two, there are many
more combinations possible. Even if the three switches
are not velocity sensing (e.g. if they are only single throw
switches), there are still 51 combinations, which can be
enumerated as follows:

o Choose any one of the three switches (one symbol each)
o Choose any pair of switches (e.g. omit any one of the
three switches from the chord). For each of these three
choices, there are four possible symbols (corresponding to
the symbols 3 through 6 of Fig 5).
» Using all three switches, at the ARPA (arpeggio, Fig 3)
stage:

— there are three choices for First switch;

— once the first switch is chosen, there remains the ques-
tion as to which of the remaining two will be pressed Next;

— then there is only one switch left, to press Last.
Thus at the ARPA stage, there are 3x2x1 = 6 different ways
of pressing all three switches. At the APRA (oiggepra,
Fig 3) stage, there are an equal number of ways of releasing
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Fig. 5. The cybernetic keyer: Timing information is depicted
as dual traces: SWITCH 0 is depicted by the bottom trace and
SWITCH 1 by the top trace. The zeroith symbol 00 depicts the
open chord (no switches pressed). The first symbol 01 depicts the
situation in which only SWITCH 0 is pressed. The second symbol
10 depicts the situation in which only SWITCH 1 is pressed. The
third through sixth symbols 11 arise from situations in which
both switches are pressed and then released, with overlap. The
third symbol FLFL depicts the situation in which SWITCH 1
is pressed First, switch O is pressed Last, SWITCH 1 is released
First, and switch 0 is released Last. Similarly LFLF denotes Last
First Last First (fourth symbol). FLLF denotes the situation
in which SWITCH 1 is held down while SWITCH 0 is pressed
and released (fifth symbol). LFFL denotes the situation in which
SWITCH 0 is held down while SWITCH 1 is pressed and released
(sixth symbol). The zeroith through sixth symbols are denoted by
reference numerals 0 through 6, respectively. Each of the active
ones (e.g. other than the Open chord, 0) are given a meaning in
operating a recording machine, with the functions PLAY, STOP,
FastForward (FF), REWind, RECord, and PAUSE.

Fig. 6. Cybernetic Keyer timing example: In this example, the
top trace denotes SWITCH 1, and the bottom trace SWITCH 0.
Initially, SWITCH 0 is pressed and then SWITCH 1 is pressed.
However, because there is no overlap between these switch press-
ings, they are interpreted as separate symbols (e.g. this is not a
chord). The separate symbols are 1 (PLAY) and 2 (STOP) re-
spectively. This results in the playing of a short segment of video
which is then stopped. Then, a little while later, SWITCH 0
is pressed and then SWITCH 1 is pressed. However, because
there is now overlap, this action is considered to be a chord.
Specifically it is an LFLF (Last First Last First) chord, which is
interpreted as symbol number 4 (REWIND). A REWIND oper-
ation on a stopped system is interpreted as high speed rewind.
A short time later, SWITCH 0 is held down while SWITCH 1
is pressed briefly. This action is interpreted as symbol number
6 (PAUSE). Since PAUSE would normally be used only during
PLAY or RECORD, the meaning during REWIND is overloaded
with a new meaning, namely slow down from high speed rewind
to normal speed rewind. Thus we have full control of a record-
ing system with only two switches, and without using any time
constants as might arise from other interfaces such as the iambic
Morse code keyers used by ham radio operators.
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Fig. 7. Cybernetic keyer timings: The symbol “X” denotes press-
ing of the two keys, and exists in the first pair of time dimensions,
to and t;. The releasing of the two keys exists in the first second
pair of dimensions, which, for simplicity (since it is difficult to
draw the four dimensional space on the printed page), are also
denoted tp and t1, but with the symbol “O” for Open. Exam-
ples of symbols 3 through 6 are realized. T'wo other examples,
for when the switch closures do not overlap, are also depicted.
These are depicted as 1,2 (symbol 1 followed by symbol 2) and
2,1 (symbol 2 followed by symbol 1).

these three switches that have all been pressed. Thus there
are six ways of pressing, and six ways of releasing, which
gives 6 * 6 = 36 symbols that involve all three switches.
Therefore, the total number of symbols on the three switch
keyer is 3+ 12436 = 51. That’s a sufficient number to gen-
erate the 26 letters of the alphabet, the numbers 0 through
9, the space character, and four additional symbols.

Uppercase and control characters are generated by using
the four additional symbols for SHIFT, CONTROL, etc., of
the letter or symbol that follows. Thus the multiplication
sign is SHIFT followed by the number 8, and the at sign is
SHIFT followed by the number 2, and so on.

It is preferable to have all the characters be single chords,
so that the user gets one character for every chord. Hav-
ing a separate SHIFT chord would require the user to re-
member state (e.g. remember whether the SHIFT key was
active), and would also slow down data entry.

Accordingly, if a fourth switch is added, we can:

o Choose any one of the four switches (one symbol each);

o Choose any pair of switches. For each of these 2(44—i2)! =6

choices, there are four possible symbols (corresponding to
the symbols 3 through 6 of Fig 5);
o Choose any three switches (e.g. omit any one of the
four switches from the chord). For each of these 4 choices,
form the chord in any of the 3 x 2% 1 = 6 possible ways,
and unform the chord in any of six possible ways, giving
62 = 36 ways to create and uncreate the chord of the three
chosen switches, as described in the three switch example
above;
« Using all four switches, at the ARPA (arpeggio) stage:
— there are four choices for First switch;

— once the first switch is chosen, there remains the ques-
tion as to which of the remaining three switches will be
pressed Second;

— once the second switch is chosen, there remains the
question as to which of the remaining two switches will
be pressed Third;

— then there is only one switch left, to press Last.

Thus at the ARPA stage, there are 4 * 3% 2% 1 =4l =24
different ways of pressing all four switches. At the APRA
(oiggepra) stage, there are an equal number of ways of re-
leasing these four switches that have all been pressed. Thus
there are twenty four ways of pressing, and twenty four
ways of releasing, which gives 24 x 24 = 576 symbols that
involve all four switches.

Therefore, the total number of symbols on the four switch
keyer is

=412 +6%2% +4 %67 + 1247 = 748, (1)

That’s a sufficient number to generate the 256 ASCII sym-
bols, along with 492 additional symbols which may be each
assigned to entire words, or to commonly used phrases,
such as a sig (signing off) message, a callsign, or com-
monly needed sequences of symbols. Thus a callsign like
“NINLF” is a single chord. A commonly used sequence
of commands like ALT 192, ALT 255, ALT 192, is also a
single chord. Common words like “the”, “and”, etc., are
also single chords.

The four switches can be, one each associated with the
thumb, and three largest fingers, leaving out the small-
est finger. Claude Shannon’s information theory, however,
suggests that if we have a good strong clear channel, and a
weaker channel, that we can get additional error free com-
munication by using both the strong and weak channels
than we can by using only the strong channel. Therefore,
we can and should use the weak (smallest) finger, for at
least a small portion of the bandwidth, even though the
other four will carry the majority of the load. Thus, refer-
ring to Fig 2, especially Fig 2(b), we can see that there are
four strong double throw switches for the thumb and three
largest fingers, and a fifth smaller switch having a very
long lever for the smallest finger. The long lever makes
it easy to press this switch with the weak finger but at
the expense of speed and response time. In fact, each of
the five switches has been selected specifically knowing the
strength and other attributes of what will press it. This
design gives rise to the pentakeyer.

The result in (1) can be generalized. The number of
possible chords for a keyer with N switches, having only
Single Throw (ST) switches, and not using any looping
back at either the Delay or Yaled (Fig 3) stages of chord
development, is:

n=N
2 n!(NNi n)! (nl)? (2)



Equation 2 simplifies to:
2 Nl
Z (N —n)! ®)
n=1

Thus the pentakeyer gives us 5+40+360+2880+14400 =
17685 possible chords, without the use of any loopback,
velocity sensing, or timing constants.

V. REDUNDANCY

The pentakeyer provides enough chords to use one to
represent each of the most commonly used words in the
English language. There are, for example, enough chords to
represent more than half the words recognized by the UNIX
“spell” command with a typical /usr/share/lib/dict/words
having 25143 words.

However, if all we want to represent is ASCII characters,
the pentakeyer gives us 17685/256 > 69, e.g. more than 69
different ways to represent each letter. This suggests that,
for example, we can have 69 different ways of typing the
letter “a”, and more than 69 different ways of typing the
letter “b”, and so on. In this way, we can choose whichever
of these ways follows most conveniently in a given chord
progression.

In using most musical instruments, there are multiple
ways of generating each chord. For example, in playing the
guitar, there are at least two commonly used “G” chords,
both of which sound quite similar. The choice of which
“G” to use depends on which one is easiest to reach, based
on what chord came before it, and what chord will come
after it, etc.. Thus the freedom in having two different
realizations of essentially the same chord makes playing
the instrument easier.

Similarly, because there are so many different ways of
typing the letter “a”, the user is free to select the particular
realization of the letter “a” that’s easiest to type when con-
sidering whatever came before it and whatever will come
after it. Having multiple realizations of the same chord is
called chordic redundancy. Rather than distributing the
chordic redundancy evenly across all letters, more redun-
dancy is applied where it is needed more, so that there are
more different ways of typing the letter “a” than there are
of typing the letter “q” or “u”. Part of this reasoning is
based on the fact that there are a wide range of letters that
can come before or after the letter “a”, whereas, for exam-
ple, there is a smaller range of, and tighter distribution on,
the letters that can follow “q”, with the letter “u” being in
the center of that relatively narrow distribution.

Redundancy need not be imposed on the novice, e.g. the
first—time user can learn one way of forming each symbol,
and then gradually learn a second way of forming some of
the more commonly used symbols. Eventually, an experi-
enced user will learn several ways of forming some of the
more commonly used symbols.

Additionally, some chords are applied (in some cases
even redundantly) to certain entire words, phrases, expres-
sions, and the like. An example with timing diagrams for
a chordic redundancy based keyer is illustrated in Fig 8
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Fig. 8. Example of Keyer with a functional chordic redundancy
generator or keyer having functional chordic redundancy. This
keyer is used to type in or enter the numbers from 0 to 9 using
three single throw switches. Each symbol (each number from 0 to
9) may be typed in various ways. Thus if we wish to type “001”,
we can do this as follows: first press and release switch SWO0, to
obtain symbol 0g (the zeroith embodiment of symbol 0); then to
speed up the process (rather than press the same switch again)
we press switch SW1 while holding SW2, to obtain symbol 0;
which is another realization of the symbol 0; we then choose a
realization of the symbol 1, namely 12, that does not begin with
switch SW2. Thus before the chord for symbol 0; is completely
released (e.g. at the Yaled stage), we begin entering the chord
for symbol 13, starting with the available switch SWO0.

This approach, of having multiple chords to choose from,
in order to produce a given symbol, is the opposite of an
approach taken with telephone touchpad style keyboards
in which each number could mean different letters. In U.S.
Pat. No. 6,011,554, issued January 4, 2000, assigned to
Tegic Communications, Inc. (Seattle, WA), King; Martin
T. (Vashon, WA); Grover; Dale L. (Lansing, MI); Kushler;
Clifford A. (Vashon, WA); Grunbock; Cheryl A. (Vashon,
WA) describe a disambiguating system in which an infer-
ence is made as to what the person might likely be trying to
type. A drawback of this Tegic system is that the user must
remain aware of what the machine thinks he or she is typ-
ing. There is an extra cognitive load imposed on the user,
including the need to be constantly vigilant that errors are
not being made. Using the Tegic system is a bit like us-
ing command line completion in Emacs. While it allegedly
purports to speed up the process, it can, in practice, slow
down the process by imposing an additional burden on the
user. In some sense, the Tegic system is a form of anti—
redundancy, giving the user less flexibility. For example,
forming new words (not in the dictionary) is quite difficult
with the Tegic system, and when it does make mistakes,
they are harder to detect because the mistakes get mapped
onto the space of valid words.

Indeed, chordic redundancy (choice) is much more pow-
erful than anti-redundancy (anti—choice) in how characters
can be formed.

VI. ORDINALLY CONDITIONAL MODIFIERS

A modifier key is a key that alters the function of another
key. On a standard keyboard, the SHIFT key modifies
other letters by causing them to appear capitalized. The
SHIFT key modifies other keys between two states, namely
a lowercase state and an uppercase state.

Another modifier key of the standard keyboard is the
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Fig. 9. Example of keyer with ordinally conditional modifier. Letters
are arranged in order of letter frequency starting with the letter
“e” which is the most commonly used letter of the alphabet. Each
of the 26 letters, the ten numbers, and some symbols are encoded
with the 51 possible chords that can be formed from 3 switches,
a middle finger switch, SWm, an index finger switch, SWi, and a
thumb switch, SWt. (The more common letters such as e, t, a,
etc., are also encoded redundantly so that there is more than one
way to enter, for example, the letter “e”.) A ring finger switch,
SWr, is the ordinally conditional modifier. If SWr is not pressed,
an ordinary lowercase character is assumed. If a chord leads with
SWr, the character is assumed to be an uppercase character. If
the chord is entered while holding SWr the character is assumed
to be a control character. If a chord trails with SWr, it is assumed
to represent a meta character. The ordinally conditional modifier
is also applied to numbers to generate some of the symbols. For
example, an exclamation mark is entered by leading with SWr,
into the chord for the number 1.

control key. A letter key pressed while the control key is
held down is modified so that it becomes a control charac-
ter. Thus the letter “a” gets changed to “A” if it is pressed
while the control key is held down.

With the cybernetic keyer, an approach is to have a mod-
ifier that is ordinally conditional, so that its effect is respon-
sive to where it is pressed in the chord. See Fig 9 for an
example of how a four key ordinally conditional modifier is
implemented.

VII. ROLLOVER

One reason chording keyboards can be slow is that they
often don’t provide rollover. A regular QWERTY... key-
board allows for rollover. A typical 1984 IBM MODEL M
keyboard, for example, will be responsive to any key while
the letter “q” is held down. When the letters “q” and “w”
are held down, it is responsive to most keys (e.g. all those
except keys in the q and w columns). When the letters

[1Pb

q”, “w”, and “e” are held down, it is responsive to other
keys except from those three columns. When “q”, “w”,
“e”  and “r” are held down, it is still responsive to keys in
the right hand half of the keyboard (e.g. keys that would
ordinarily be pressed with the right hand). Only when five
keys are held down, does it stop responsing to new key-
presses. Thus the MODEL M has quite a bit of rollover.
This means that one can type new letters before finishing
the typing of previous letters. This ability to have over-
lap between typing different letters allows a person to type
faster because a new letter can be pressed before letting go
of the previous letter.

Commercially available chording keyboards such as the
Handykey Twiddler and the BAT don’t allow for rollover.
Thus typing on the Twiddler or BAT is a slower process.

A goal of the cybernetic keyer is to be able to type
much more quickly. Therefore, an important feature, is the
tradeoff between loopbacks at the Delay and Yaled stages

(Fig 3), and rollover. If we decide, by design, that there
will be no loopback at the Delay or the Yaled stages, we can
assume that a chord has been committed to at the Release
stage. Thus once we reach the Release stage, we can begin
to accept another chord, so long as the other chord does
not require the use of any switches that are still depressed
at the Release stage. However, because of the sixty nine—
fold chordic redundancy, it is arranged that, for most of the
commonly following letters, there exists at least one new
chord that can be built on keys not currently held down,
at the Release stage.

A. Ezample of rollover on a cybernetic keyer

With reference to the two switch keyer, suppose we
press SWITCH 1, then press SWITCH 0, and then release
SWITCH 1. We are now at the Release stage, and can
enter a new command with SWITCH 1, since we know
that there will be no Yaled loopback (e.g. since we know
that the chord will not involve pressing SWITCH 1 again).
Thus pressing SWITCH 1 again can be safely used as a
new symbol, prior to releasing SWITCH 0. In this way,
symbols can rollover (overlap).

VIII. FURTHER INCREASING THE CHORDIC
REDUNDANCY FACTOR: A MORE EXPRESSIVE
KEYER

The number of possible chords can be increased from
17685 to 7 4+ 84 4+ 1260 + 20160 + 302400 + +3628800 +
25401600 = 29354311 by simply adding three switches at
the thumb position. This provides more than twenty nine
million symbols, which is enough that each word in the
English language could be represented in approximately
a thousand different ways. This degree of chordic redun-
dancy could provide for some very fast typing, if this many
chords could be remembered. However, rather than in-
creasing the number of switches, it is preferable to increase,
instead, the expressivity of each one.

The pentakeyer is a crude instrument that lacks an abil-
ity to provide for tremendous “expression” and sensitivity
to the user. It fails to provide a rich form of Humanistic
Intelligence in the sense that the feedback is cumbersome,
and not continuous. A guitar, violin, or real piano (e.g. an
old fashioned mechanical piano, not a computerized syn-
thetic piano data input keyboard), provides a much richer
user experience because it provides instant feedback, and
the user can experience the unique response of the instru-
ment.

Even using both rails of each switch (e.g. double throw
and even velocity sensing) still fails to provide a truly ex-
pressive input device. Accordingly, a better keyer was built
from continuous transducers in the form of phonographic
cartridges salvaged from old record players. These devices
provide continuous flow of pressure information along two
axes (each phono cartridge is responsive to pressure along
two independent axes at right angles to one another, origi-
nally for playing stereo sound recordings from the grooves
of arecord). The dual sensor is depicted in Fig 10, and may
comprise either a continuous sensor, or two on—off switches



Fig. 10. Dual sensor keyer. Sensors SO and S1 may be switches or
transducers or other forms of sensory apparatus. Sensors SO and
S1 are operable individually, or together, by way of rocker Block
BO1. Pressing straight down on Block B01 will induce a response
from both sensors. A response can also be induced in only one
of sensors SO or S1 by pressing along its axis.

operable on separate axes.

In this embodiment, the keyer described here is similar
to the ternary data entry keyboard described by Langley,
October 4, 1988, in U.S. Pat. No. 4,775,255, in the sense
that there are also to axes of each key, so that a given key
can move towards or away from the operator, and has a
central “off” position, and a spring detent to make the key
return to the central position in the absence of pressure
from the finger. An important difference, though, is the
fact that the keyboard of U.S. Pat. No. 4,775,255 has
no ability to sense how fast, how hard, or how much each
switch is pressed, other than just the ternary value of 0,
+1, or -1. Also, in the keyer of U.S. Pat. No. 4,775,255,
the axes are not independent (e.g. one can’t press +1 and
-1 at the same time).

The sensor pair of Fig 10, on the other hand, provides
two independent continuous dimensions. Thus a keyer
made from five such sensor pairs provides a much more
expressive input. Even if the transducers are quantized, to
binary outputs, there are four possibilities: 0,—1,41, and
+1. With five continuous transducers, one for each finger
or thumb position, the user interface involves squeezing out
characters, rather than clicking out characters. The input
space is a very richly structured ten dimensional times-
pace, producing ten traces of time—varying signals. This
ten dimensional timespace is reduced to discrete symbols
according to a mapping based on comparison of the wave-
forms with reference waveforms stored in a computer sys-
tem. Since comparison with the reference waveforms is ap-
proximate, it is done by clustering, based on various kinds
of similarity metrics.

IX. INCLUDING ONE TIME CONSTANT

If we relax the ordinality constraint, and permit just one
time constant, pertaining to simultaneity, we can obtain
eleven symbols from just two switches. Such a scheme can
be used for entering numbers, including the decimal point.

00 (Open chord not used)
01

10
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FLW

LFFL
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Fig. 11. Example showing Keyer Chords within timing tolerances
Wy and Wi. Time differences within the tolerance band are
considered to be zero, so that events falling within the tolerance
band defined by Wy and W; are considered to be effectively
simultaneous.

LFLF
LFW
WFL
WLF
WW
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Using this simple coding scheme, the number zero is en-
tered by pressing the LSK. The number one is entered by
pressing the MSK. The number four, for example, is en-
tered by pressing the MSK first, then pressing the LSK,
and then releasing both at the same time, Within a cer-
tain time tolerance for which time is considered the same.
(The letter “W” denotes Within tolerance, as illustrated
in Fig 11.) The decimal point is entered by pressing both
switches at approximately the same time, and releasing
both at approximately the same time. The “approximately
the same time” is defined according to a band around the
line to = t1 in Fig 4. Such a timing band is depicted in
Fig 12.

This number system can be implemented either by two
pushbutton switches, or by a single vector keyswitch of two
components, as illustrated in Fig 10. In the latter case, the
entire set of number symbols can be entered with just one
switch, e.g. by just one finger. Note that each number
involves just a single keypress, unlike what would be the
case if one entered numbers using a small wearable Morse
code keyer, or the like. Thus the cybernetic chordic keyer
provides a much more efficient entry of symbols.

X. MAKING A CONFORMAL KEYBOARD

Wearable keyers are known in the art of ham radio. For
example, in U.S. Pat. No. 4,194,085, March 18, 1980,
Scelzi describes a “Finger keyer for code transmission”.
The telegraphic keyer fits over a finger, preferably the index
finger, of an operator, for tapping against the operator’s
thumb or any convenient object. It is used for transmis-
sion of code with portable equipment. The keyer is wear-
ably operable when walking, or during other activities.
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Fig. 12. Chordic Keyer with timing tolerances. In addition to the
unused Open chord, there are eleven other chords that can be
used for the numbers 0 through 9, and the decimal point.

Keyers, such as previously known keyers, as well as the
proposed keyers, such as the pentakeyer, and the continu-
ous ten dimensional keying system, are much easier to use
if they are custom made for each user. The most important
aspect is getting the hand grip to fit well.

A subject of ongoing work, therefore, is in designing ways
of moulding the keyers to fit the individual hand of the
wearer. Presently, this is done by dipping the hand in
icewater, and draping it with heated plastic material that
is formed to the shape of the hand. Once the handpiece is
formed, sensors are selected and installed so the keyer will
match the specific attributes of the user’s hand geometry.

XI. CONCLUSION

Learning to use the pentakeyer is not easy, just as learn-
ing how to play a musical instrument is not easy. The pen-
takeyer evolved out of a different philosophy, more than
twenty years ago. This alternative philosophy knew noth-
ing of so—called “user—friendly” user interface design, and
therefore evolved along a completely different path.

Just as playing the violin is much harder to master than
playing the TV remote control, it can also be much more

rewarding and expressive. Thus if we were only to consider
ease of use, we might be tempted to teach children how to
operate a television because it is easier to learn than how to
play a violin, or how to read and write. But if we did this,
we would have an illiterate society in which all we could
do were things that were easy to learn. It is the author’s
belief that a far richer experience can be attained with a
lifelong computer interface that is worn on the body, and
used constantly for ten to twenty years. On this kind of
time scale, an apparatus that functions as a true extension
of the mind and body, can result. Just as it takes a long
time to learn how to see, or to read and write, or to operate
one’s own body (e.g. it takes a number of years for the
brain to figure out how to operate the body so that it can
walk), it is expected that the most satisfying and powerful
user interfaces will be learned over many years.
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