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Abstract—We propose the use of SSVEP (Steady State Visual
Evoked Potentials) in such a way as to cause the eye itself
to function as a camera. By recording brainwaves in response
to flickering visual stimuli, we read the “mind’s eye” and are
able to successfully reconstruct a visual image of subject matter
that a person is looking at. In addition to causing the eye
itself to function as a camera (see Fig 1), we also propose a
new way to visualize and photograph human vision and human
perception, i.e. a new way to see and understand human vision.
This new “meta-vision” (vision of vision) has many applications
in healthcare, from testing human vision to furthering our
understanding of the brain.

I. INTRODUCTION

The field of wearable and mobile computing, as well as
body-sensor networks [1] and implants [2], [3] is increasingly
being applied to healthcare [4] and prosthetics [5]. Smart
technologies like smart homes [6] and smart cities [7] with
dense wireless networks are evolving into a mesh of sensors
and communications networks that span entire cities, with
cameras and microphones in every streetlight to monitor the
health of the city, through wireless mesh routing [7]. At the
individual human scale, sensors are working their way into the
fabric of everyday life, improving our health and well-being
through the Internet-of-Things [8]–[10], as well as through
sensing in almost all living things, not just humans [11]. In
the future, nearly every light fixture will have a camera in it to
sense occupancy and adapt its light output, and nearly every
person will wear at least one camera. There will be challenges
to overcome regarding privacy, security, and trust [12]–[14]. In
the future there may be a camera in every room, not only for
playing games, but also to measure and sense our health [15].
Thus, understanding vision (human vision as well as machine
vision) is of vital importance to health, well-being, and the
modern world in general.

A. Meta-sensing (the sensing of sensing)

In this paper, we wish to photograph, explore, and under-
stand in new ways a human’s capacity to see. Let us begin by
reviewing previous work on photographing and understanding
a camera’s ability to “see” (sense). This sensing of sensors is
called meta-sensing.

We have previously shown that it is possible to visualize the
sensory capacity of sensors, such as video cameras, by way of
video feedback with a television display or even simply one
or more light bulbs or other sources of light [16], [17]. See
Fig 2.
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Fig. 1: Capturing and processing brainwaves causes the human
eye itself to function as a photographic camera.

We can photograph such a sensor’s ability to sense, using
a process we refer to as “metavision” or “metaveillance” (i.e.
the sensing of sensors and the sensing of their capacity to
sense) [17].

For example, we have constructed a number of robotic
mechanisms, including swarms of drones [18], as well as delta
and cartesian 3D plotters that map out the capacity of sensors
to sense. See Fig 3 where we photograph a smart street light’s
capacity to sense, by using a moving light source arranged
so that its light output increases in proportion to a camera’s
ability to sense it.

In a similar way, we can also photograph automobiles along
with their capacity to sense. Such photographs (metaveillo-
graphs) are useful because they provide us with insight regard-
ing the sensory capacity of these devices, which is especially
valuable when lives are at stake (e.g. self-driving cars, and
having photographic evidence to verify that the automotive
product was in good order when it left the assembly line)
[19]. Judges and juries appreciate photographic evidence, and
photographic evidence like that of Fig. 3 can serve a useful
purpose in verifying the integrity of vision systems.
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Fig. 2: (a) Metaveillography, where a long-exposure photo-
graph is captured of a light bulb being waved back-and-forth
in front of a surveillance camera. Picture c©1975 S. Mann. (b)
The experimental setup. A television receiver is implemented
in a wearable computer system with lock-in amplifier to pick
up even extremely weak television signals, amplify them, and
feed them to a light bulb. The light bulb is set to always be
at least slightly illuminated. When it comes into the field-of-
view of the camera, it goes to full-on, due to video feedback.
This allows us to see a camera’s capacity to see. This sensing
of sensors, and sensing of their capacity to sense, is called
metaveillance [17]. Note the delayed response between when
the light bulb enters the camera’s field of view, and when
it reaches full output. There is also a delayed “desponse”
between when the light bulb exits the camera’s field of view
and it desponds. This is the phenomena of hysteresis (delayed
response and delayed desponse) that is captured as the light
source moves alternately left and right.
*Response time is the time delay on the rising edge of a
stimulus, whereas “desponse” time is the time delay on the
falling edge of a stimulus.

B. Meta-sensing of human vision

Mann et. al. [20] and Janzen et. al. [21] have previously
photographed human vision, e.g. using photography as a
medium of display for data captured through an eye test. The
subject was asked to report on what is seen while a visual
stimulus was presented by the experimenter.

In a recent abstract (the ACM WearSys 2019 Keynote,
[12]) we very briefly described how the human visual system
could be investigated directly, from nature itself, i.e. without
asking the subject any questions about what is visible. The
resulting “ayinographTM” can thus be regarded as evidence
rather than testimony. Our method consists of monitoring the
brain’s response to a flickering visual stimulus, and plotting
or photographing the magnitude of the response to the visual
stimuli in different parts of the visual field using Steady State
Visual Evoked Potentials (SSVEPs). For example, a flickering
computer display was moved back and forth horizontally
(or vertically, or both) across and beyond the visual field
of view of a human observer, while EEG was monitored
using a portable EEG headband called MuseTM(manufactured
by InteraxonTM). The magnitude of the brain’s response to
the flickering stimulus at the same frequency was used to
change the colour and luminance of an RGB LED light that
was attached to the moving computer display. Long exposure

Fig. 3: Top: Long-exposure photograph of a sensor’s ability to
sense. Here is a photograph of a smart city LED streetlight.
Like many smart city streetlights, it has a camera in it.
Beneath the streetlight, we have placed a robotic mechanism
that moves a light source in circular arcs. The light source
is connected to an amplifier that receives input from the
streetlight’s vision (i.e. its capacity to sense), establishing a
feedback loop as was done in Fig 2 [17]. The light source is
an RGB LED with voltage to color converter, such that red
is the background (bias) color (like the dull red glow of an
incandescent light bulb of Fig 2 at very low voltage), green is
for medium veillance, and blue is for strong veillance. Bottom:
closeup showing the first six sweeps. The first sweep is a
counterclockwise sweep nearest the camera. The 6th sweep is
a clockwise sweep. Note the slight hysteresis (as explained in
Fig 2).
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Fig. 4: Top: Metaveillography of a subject captured with
mechanical prototype. Here, stepper motors move a brain-
modulated light source through space. The bright red color
of the RGB LED shows areas where the EEG picked up
a strong SSVEP signal. The observer focuses on a single
point directly ahead, and lets the smartphone move in and
out of their peripheral vision. The long-exposure photograph
shows only a narrow beam of sight approximately equal to
the height of the phone. Bottom: Another subject’s interpolated
metaveillograph. Sparsely sampled SSVEP data is interpolated
to make the high-resolution image [12].

photography was used to integrate this image over time for
direct photography of the receptive field properties of the
human visual system. In this paper we build upon this work.
See for example Fig 4.

II. EYE IS A CAMERA

Previous work has been done to capture a person’s vision
from the exact same perspective as the human eye itself. This
was done either from one eye, such as the wearer’s right eye
(see Fig 5) or both eyes (in the case of a stereo vision system).

We begin with a series of studies in photographing a
human’s capacity to see, i.e. meta-vision, which we believe
may be useful for diagnosing and understanding vision, health
care, eye testing, vision testing, and at the very least, a new
form of visual art.

For this we created a 3D plotter which held a smartphone.
The smartphone presents a set of four squares alternating
between light colours and black at a fixed frequency such as

Fig. 5: The EyeTap Principle uses a camera and 45-degree
mirror or beamsplitter to capture exactly the same viewpoint
as the human eye. If we look into the eye of the wearer, it
looks as though the eye is made of glass (camera lens) because
we’re seeing a reflection of the left-facing camera sitting on
the nose bridge. IEEE Spectrum, used with permission.

12 Hz. The observer’s head is fixed by a chin rest as well
as a headrest on a high chair back. The observer looks at
the smartphone’s display located initially 4cm from the eye.
The display is then moved slowly vertically with the plotter,
going up and down at 5mm/sec, and retreating further from
the participant on each pass, at 1/10th that rate (0.5mm/sec),
traveling a distance of up to 21cm. This has the effect of
rastering a slice of visual space in a vertical plane coming out
from the face of the participant.

While this is occurring the observer is wearing a portable,
wearable, EEG system (MuseTMby InteraxonTM), which is mod-
ified with one or more additional EEG electrodes secured in a
3D printed holder and attached to a flexible headband holding
it over the occipital lobe. Specifically the center electrode is
placed at location Oz (with others, optionally, at locations O1
and O2). The SSVEP is collected by measuring the power
spectra of the resultant EEG signal over time. The power
spectra are computed with a windowed FFT (Fast Fourier
transform) with a window size of 10 seconds. The ratio of
12 Hz power to power in the rest of the frequency bands is
then estimated, and used to modify the colour of the flickering
checkerboard pattern, as well as an LED attached the plotter
itself, facing orthogonal to the line of sight of the observer. The
LED faces directly toward a camera that takes a long-exposure
photograph of the person’s face (side-view), their right eye
(though both eyes are sensed), and the moving light source.
The LED colour is changed from blue to red in proportion to
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NO
Fig. 6: The first sessions in which an image was reconstructed
from recordings of brainwaves. The power of the flickering
frequency in the EEG data at each point of the eyes’ move-
ments on the screen was captured. For every location the eyes
looked, a color was added proportional to the coincident power
of the flickering frequency (akin the the pixel value of an
image). Darker areas of the image provide lower response,
and lighter areas of the image provide higher response of the
SSVEP (Steady State Visual Evoked Potential). Large SSVEP
power was observed when the individual was looking at light
colored objects such as the letters, and low SSVEP power was
observed when the individual was looking at the darker (less
flicker amplitude) background. The word “NO” was visibly
reconstructed from mind’s eye, based on SSVEP amplitude of
EEG signal at each eye location during viewing of a flickering
image of the word “NO”. The image was interpolated in
2D to create a rough visualization of image in view of the
observer. While blurry, this is the first ever reconstruction of
a visual image from human brainwave activity captured with
simple dry surface electrodes and using a simple commercially
available EEG headband.

the relative power of 12 Hz activity compared to the rest of
the spectra. This creates a way to visualize the useful field of
view of the human visual system as shown in top of Fig 4.

We have established that the eye can function as a camera.
By projecting the image to the side and collecting it with
long exposure photography, we can photograph the observer’s
visual field. When the observer used overt attention to track
the phone with their eyes, the effect created a broad cone of
vision. However, when the observer fixated on a point directly

ahead, and covertly attended to the moving smartphone display
screen in the periphery, the photographed visual field appeared
much narrower. Therefore we think of this visualization being
related to a person’s visual attention, or consciousness of the
space around them. Other results from these experiments are
detailed in [22].

III. PICTURES FROM THE “MIND’S EYE”
Initially we created a flickering visual stimulus on the screen

with contours created by non flickering black areas. We spelled
the word “NO” as flickering subject matter. The observer was
tasked with rastering their eyes horizontally and vertically
across the flickering stimulus in a prescribed uniform raster-
scan pattern, identical to the raster-scan of a progressively
scanned television image. The observer’s eye movements and
location of fixation were tracked with a TobiiTMdesktop eye
tracker which was pre-calibrated. The observer’s EEG was
recorded with a Muse headset, with an auxiliary Oz electrode
providing high quality EEG data sampled at 256 Hz. See
Fig. 6.

For every location to which the eyes moved, an estimate of
the SSVEP magnitude was made from the EEG by performing
a windowed FFT (10 second window) and computing the
relative power of 12 Hz activity compared to the rest of the
spectra. The more flickering light that entered the eye at that
fixation location, the stronger the SSVEP magnitude was. We
predicted that this modulation in SSVEP was a function of the
subject matter’s light level for each position of the raster scan.
Thus lighter areas of the image produce higher SSVEP and
darker areas lower SSVEP. This information was combined
with the eye tracking data to recreate an image of what the
participant was observing. See Fig. 6.

In some experiments we eliminated the need for the eye
tracker, by simply displaying a cursor that moved along the
subject matter in the prescribed pattern, to guide the person
where to look. However, even in this case, the eye tracker is
useful as it allows us to detect saccades, blinking, or other
anomalies to be filtered out or down-weighted.

Although the unstructured eye-tracking based scanning ap-
proach successfully captures large patterns, it fails to capture
fine details. A list of some of the problems with the previous
approach:

1) eye-tracking is only accurate to within a few centimeters
2) consecutive rasters (without breaks for the subject) lead

to fatigue
3) an SSVEP response is elicited not only when a person

looks directly at a flashing point, but also (to a lesser
degree) when there is flashing in their peripheral vision,
thereby decreasing the resolution of the output image.

To address these issues, a new process was devised in which
a cursor would slide across the target image. The cursor’s
shape, size, speed, closeness to face, colour, frequency of
flashing, and brightness were optimized for maximal response
and response reliability.

In this approach, the subject follows a white dot in the center
of a square cursor as it slides from the left side of the image
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Fig. 7: Experimental setup with observer viewing a displayed
image. Here the image is a simple picture of the word “NO”
displayed on a dark background. (the image is flickering at 12
Hz).

to the right. When the square is over a non-black part of the
image, it flashes bright yellow and blue at 15Hz, which is
faster than most alpha waves, and an improvement over our
previous 12Hz stimulus from our own study on the optimal
stimulus, as well as results from previous literature in VEP
[23], [24].

As the subject concentrates on the moving square, EEG
data is recorded. The image is produced with the following
methodology:

1) For each position, the power spectral density is com-
puted over a 1700-sample window (256 samples/second
* 6.67 seconds, the time it takes the cursor to pass over
a point).

2) Harmonics of the fundamental VEP frequency are
present in VEP response [23], so we include the 30 Hz
values in our power estimate, and divide them by the
power over the 14 to 50 Hz frequency domain to filter
common-mode noise.

3) Due to scan lines overlapping, pixel measurements are
composed of measurements in multiple vertical loca-
tions. They are combined with a linear model of human
vision in the center of focus and near periphery:

f(x) = 2x+ x1 + x−1 +
x2 + x−2

2
(1)

Where x is a given pixel value, x1 and x2 are pixel
values at the same index above that row, x−1 and x−2

are pixel values in the same index below that row.

Utilizing this technique, we took a mind’s eye image a ”No
Cameras” sign. It has been observed [25] that establishments
often use surveillance recording devices while at the same time
banning patrons from taking pictures or recording video. This

hypocrisy embodies a lack of integrity [26], resulting in an
incomplete truth (i.e. a half-truth) [27]. To demonstrate the
absurdity of such rules, we have taken an image of a ”No
Cameras” sign without the use of any camera other than the
human eye itself, thus blurring the distinction between seeing,
remembering, and recording. Capturing an image using the
human eye as a camera (by only reading bio-signals) means
that we are recording data that already belongs to us. The
result of this demonstration shows the absurdity of the ”No
Cameras” rules, as the only way to enforce such a concept
would be to ban us from entering the establishment with our
brains! While the owners of such establishments may be used
to leaving their brains at home, this is something that we, the
authors, do not want to be compelled to do!

Continuing this research, a similar method was applied on
an image of a human face. The image flashes at 15 Hz,
and the test subject follows 48 rasters across the screen.
The image is displayed horizontally during trials, and is then
rotated 90 degrees clockwise post trial. White and black is
used as opposed to yellow and blue to allow for a stronger
contrast between facial features. The interpolation method
used is identical to that of Fig 8b. After interpolation, data
is multiplied by a factor of 2 to increase image brightness.
See Fig. 1.

This technique proved extremely promising and thus it was
adapted and expanded upon in order to capture ”real-world”
images using the human eye as a camera. To recreate rastering
in the real world, a mechanical apparatus was built that could
move a light source through space at a specific location and
speed. This apparatus consisted of two tripods setup 6 feet
apart, each with multiple pipe mounts spaced incrementally
along the vertical length of the tripod. A pipe with the attached
light source was attached horizontally between these tripods,
at varying heights, depending on which scan line was being
captured. Each scan line was then captured by sliding the light
source along the pipe at a steady rate, as controlled by a
mechanical pulley system and a human operator utilizing a
metronome for timing. The light source was then shone on
the object that was to be photographed (see Fig. 10 to see a
snapshot of the experimental process). The participant would
then watch as the apparatus drew scan lines over the object of
interest. See Fig. 11, a result of this method.

Continuing on the work presented in the IEEE GEM
(Games, Entertainment and Media) Conference [22] taking
images of real-world objects, we modified a pair of shutter
glasses (traditionally used for viewing stereoscopic video in
3D displays) to induce SSVEP in a portable, wearable way.
Taking photos in public poses a unique challenge, in that the
photographer has very little recourse to control the scene, and
must instead adapt to it. In particular, where our closed-door
tests allowed us to draw a pointer that our gaze could follow to
scan the scene of interest (e.g. with a data projector, or pixels
on a screen), in public the apparatus had to be completely self-
contained. This requirement was especially important within
the art gallery where we obtained Fig. 12b, where any changes
to the environment are unacceptable.
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(a) (b)

Fig. 8: (a) The 100px x 100px flashing yellow and blue square slides across ”NO CAMERAS”. Each scan line of the raster
takes approximately 106 seconds. 48 overlapping scan lines make up the entire image. (b) The image obtained from capturing
a participant’s EEG data while looking at ”NO CAMERAS”.

Fig. 9: The setup of the display, control computer (running
UbuntuTMGNU/Linux operating system), MuseTMEEG system,
and participant for the ”NO CAMERAS” imaging trials.

Fig. 10: Process shot of how a picture of the human form was
captured using the human eye as a camera.

Fig. 11: Left: Individual being imaged by participant. Right:
Output from EEG.

(a) Reference image: work by
Vija Celmens, part of the “Un-
titled (Ocean)” series

(b) The image of 12a obtained
from the photographer’s EEG
data.

Fig. 12
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To this end, we moved all features of the test apparatus
into the wearable computer. We occluded most of the view
on our shutter glasses so the photographer could only focus
on the spot directly in front of their gaze, to emulate the fine
spatial control of a pointer. Then, to avoid unpredictable timing
and positioning with rastering, we subdivided the scene into
discrete rectangular chunks and fixated on each at a time to
obtain pixels of the image. To obtain the image in Fig. 12b,
the photographer fixated on each chunk for 8 seconds.

IV. FUTURE DIRECTIONS

We obtained a compelling set of results. We will continue
to work to maximize the resolution, speed, and usefulness of
these techniques. Here, we also present some further possible
applications.

Equipment: One limitation is the use of an LCD monitor,
which has irregular pixel onset time with respect to each
refresh cycle, which reduces the spectral purity of the stimulus
and decreasing our signal to noise ratio. In our future research
we will use an improved monitor that can flicker more reliably
such as a CRT (Cathode Ray Tube) which we modify to
operate in vector graphics rather than raster graphics (akin
to a cathode-ray oscillograph). Finally, another limitation is
the use of a low cost portable EEG system with dry electrode
connections. In our follow up research we will utilize a better
EEG system that can record from more channels, at a faster
sampling rate, and with a better signal to noise ratio.

Signal Processing: A number of potential signal processing
schemes were tested and we have imagined a number of
potential improvements to these schemes. We realize that
some eye movements are quite quick and will not linger at
the location long enough to entrain the SSVEP in the EEG.
Here we corrected this by using a low pass 1.5 Hz 6th order
Butterworth digital filter on the eye movement X and Y data
prior to plotting. This minimizes the large eye movements but
does not remove their influence all together. A future scheme
will use a weighting based on the speed of eye movements,
to maximize the influence of slow movements and reduce this
source of error. Further, during blinking (which shuts the eye-
camera and creates an electrical artifact in the EEG), this same
reduced weight will be used, whereas here we ignored this
complexity. Further improvements include using VEP based
on the wavelet or chirplet transform [28], [29].

Imaging light vs. the mind - Simple visual illusions create
the precept of contours that are non-veridical, they are all in
the mind. Recording of neurons and EEG has shown that
these illusions are associated with activation as if there is
a real stimulus there. We predict that this technique could
be used to visualize the percept of a stimulus instead of the
stimulus itself. That is, if we present a visual illusion with
an artificial contour perceived by the observer, we predict
that the reconstructed image would also contain that illusory
contour. Additionally, we may be able to record images that
have a human element of relevancy. This might allow us to,
for example, capture a picture with emphasis on objects the
person deems relevant. Objects that a person deems relevant

Fig. 13: SSVEPVMP apparatus.

will show up more clearly in the picture, so that we will have
a new artistic and scientific “window” into human vision.

Health Applications: We believe that the veillance images
we are collecting are more related to the spotlight of attention
than they are to the physical input of light to the eye.
We found that when observers fixate on a single point and
ignore the flickering light in their visual field, the veillance
field is narrowed. However, when they track the flickering
object itself, the veillance field becomes wider. Concretely,
this methodology presents new opportunities for diagnosing
and understanding vision, e.g. the vision test of the future.
This will be useful because it goes beyond simply an eye test,
and includes important elements of brain function. This could
have far-reaching implications for health care, and will allow
us to better understand the brain and mental health. We also
propose that this could represent a useful predictive biomarker
of attention issues associated with ADHD and aging, and thus
a potential target for intervention.

A future direction of this research is the application of
visual focus metrics in wearable computing. We have already
begun to explore this through a new custom WearComp
system, the SSVEPVMP (Steady State Visually Evoked Po-
tentials Visual Memory Prosthetic). The SSVEPVMP consists
of shutter glasses, EEG headset, head-worn camera, head-
worn microphone, and a central processor (Nvidia JetsonTM or
Raspberry PiTM 4). While the user goes about their day, their
world is mediated to flicker at 15 Hz. Then, we measure the
user’s SSVEP response to predict attention to events seen in
everyday life. When the user’s visual environment is of little
importance, no (or very weak) SSVEP response is measured.
When the user’s visual stimulus is interesting and engaging,
there is a high SSVEP response. This system has been tested
to successfully predict events that were of importance to the
cyborg user. See Fig. 14

V. CONCLUSION

We proposed a method of visualizing the eye’s gaze using
synchronized EEG data with SSVEP. By mapping brain wave
response to a 12 Hz or 15 Hz flashing light stimulus, we’ve
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Fig. 14: We collected the SSVEP response of an individual
wearing the SSVEPVMP WearComp for 30 minutes. During
this time, we also recorded interesting visual events as indi-
cated by the user. We then predicted the points of interest
by collecting the times of high SSVEP response. This figure
shows a graph of the normalized SSVEP power (blue) over
30 minutes. The red bands are interesting events that occurred
during these 30 minutes, which were indicated by the user.
In our initial tests we have seen an 89% hit rate on these
interesting events.

successfully displayed images seen by the visual cortex. We
hope to further advance this technique for metavision of
the brain, and are working on applying the technology to
commercial and medical applications.
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Sistemas & Telemática, vol. 13, no. 35, pp. 89–102, 2015.

[15] A. Navarro, Y. Castaño, J. Valderrama, B. Muñoz, and J. Orozco,
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