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1.7 ANALYTICAL SOLUTION OF COMPARAMETRIC EQUATIONS
1.7.1 OVERVIEW

In this section, we demonstrate the connection between comparametric equations and the scaling
operator arising in quantum field theory, and provide a general method of solution to the comparametric
class of functional equations.

The development of the scaling operator here follows the standard formulation for operators based
on generators of infinitesimal transformations. This theory can be found in any standard graduate-level
introductory modern quantum mechanics text covering quantum field theory, such as Chapter 1 of
Sakurai (1994) or Chapter 3 of Ballentine (1998).

1.7.2 FORMAL SOLUTION BY SCALING OPERATOR

In quantum field theory we have a scaling operator Si (which is also referred to as the dilation operator
Dy). We will derive an explicit expression for this operator. First consider an infinitesimally small
scaling of the function f. Let € be a very small number. We have, up to first order in €,

F(+ ) ~f(@) +egq aaqf(q)- (132)

By repeated application of the infinitesimal scaling of ¢, we can scale ¢ by any amount ¢4
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Application of Eq. (1.32) N times with € = ]/\‘, for N large gives

9 N
f(eA‘f)leLmoo <1+ Nqaq> f(@), (1.34)
= exp (Aq aa )f(q). (1.35)
q

Choosing A = log(k), we scale g by k and thus define the scaling operator Sy as

d
S = exp <logk><qa ) (1.36)
q

The exponential here is defined as the formal series

9 = (logh)" [ 8 \"
exp | logk x g = Z (logk) q . (1.37)
aq = n! aq
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Each differential operator in this series acts on every term to the right of it. The inverse of the scaling
operator is then

S~ = S1/k = exp (— logk x qi) . (1.38)
dq
Now, given g(k, f), we can write f(g) formally as

f(q) = S1/k8(k. f(@))- (1.39)

Although this is not a convenient formulation for explicit computation of f(g), it opens the possibility
for further analysis of the general comparametric problem using the machinery of the well-known
operators arising in quantum field theory. Because Eq. (1.39) holds for any value of k, we can take k
closeto 1 (ie, k = 1 + € for € ~ 0) and we see that

f(g) = exp (—log(l + e)q%) g(1 +€,f). (1.40)

If we expand this in € up to first order, noting that higher-order terms vanish, we find

3g(k,f)> ‘
8]{ k=1 '

9
flg) = (1 —6qa—q> (g(l,f)+e (1.41)

Using the identity f = g(1,f), we end up with an ordinary differential equation,

df _ 1 og(kf)
dg g 0k

(1.42)

k=1

from which we can obtain f(g). This equation is always separable, and the solution family always
contains at least one valid solution when g(f) is monotonic and smooth. This analytical form provides
the benefit that any arbitrary camera response function can be solved exactly, and that the behavior of
noise terms can be modeled as shown in Section 1.8.

1.7.3 SOLUTION BY ORDINARY DIFFERENTIAL EQUATION

The machinery of the previous section allows us to proceed directly, merely using the result as a
recipe to solve any given analytical comparametric equations. To begin, we examine the comparametric
equation given by

fkq) = g(k,f(q))- (1.43)

Consider two cases. In the first case, the function f is known. Then g is easily found. For example,
consider the classical model

f@=a+pBq". (1.44)
Then,

fkq) =a + BK ¢”. (1.45)
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From Eq. (1.44) it follows that

_ 1y
q=<f “) . (1.46)

Substituting this in Eq. (1.45), we find

ek,f) = a + B K (f;"‘). (1.47)

In the second, more difficult case, g(k,f) is given and we have to find f(g). This is actually solving
the comparametric equation. The way to do this is as follows. By partial differentiation of Eq. (1.47)
by k, and substituting k = 1, we find

df (kq)
Ok lg=1

af'kq)|,—, = af'(@) (1.48)

ag(k.f)
ak k=1 ’

where f” is the derivative of f. So f satisfies the following ordinary differential equation:

df 1 agk.p)

5 1.49
dg q 0k ( )

k=1

which we derived in the previous section using the scaling operator. This differential equation is easily
solved because it is always separable. For example, take

gk, f)=a(l —kV)+kVf. (1.50)
We have
ag(k,f) e y—1
ok :1—((1” a)yk )k:1 (1.51)
=(f-a)y.
Now f satisfies
d 1
J;(q)= (f—a)y. (1.52)
9 q

By separating the variables, integrating, and taking the exponential of both sides, we obtain
f@) = pq" +a, (1.53)

where B appears as a constant of integration.



