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Abstract. We present a new approach for improving the effective
dynamic range of cameras by using multiple photographs of the
same scene taken with different exposure times. Using this method
enables the photographer to accurately capture scenes that contain
high dynamic range by using a device with low dynamic range,
which allows the capture of scenes that have both very bright and
very dark regions. We approach the problem from a probabilistic
standpoint, distinguishing it from the other methods reported in the
literature on photographic dynamic range improvement. A new
method is proposed for determining the camera’s response function,
which is an iterative procedure that need be done only once for a
particular camera. With the response function known, high dynamic
range images can be easily constructed by a weighted average of
the input images. The particular form of weighting is controlled by
the probabilistic formulation of the problem, and results in higher
weight being assigned to pixels taken at longer exposure times. The
advantages of this new weighting scheme are explained by com-
parison with other methods in the literature. Experimental results are
presented to demonstrate the utility of the algorithm. © 2003 SPIE
and IS&T. [DOI: 10.1117/1.1557695]

1 Introduction

Intensity values of real-world scenes can have a very w
dynamic range. This is particularly true for scenes that h
areas of both low and high illumination, such as transitio
between sunlit areas and areas in shadow, or when a
source is visible in the scene. Unfortunately, all image c
ture devices have a limited dynamic range. For digital ca
eras, the dynamic range is limited by properties of
charge-coupled device~CCD! and analog-to-digital conver
sion ~ADC!; film characteristics limit the dynamic range o
traditional cameras.

When capturing a scene containing a dynamic range
exceeds that of the camera, there will be a loss of deta
either the low-light areas, the high-light areas, or both. O
may vary the exposure to control which light levels will b
captured, and hence which light levels will be lost due
saturation of the camera’s dynamic range. This work o
considers variation of the exposure time, i.e., the dura
for which the light sensing element~CCD or film! is ex-
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posed to light from the scene. Variation of the aperture
not considered due to the effects of aperture on depth
field. By increasing the exposure time, one may get a be
representation of low-light areas at the cost of losing inf
mation in areas of high illumination; an example of this
shown at the top of Fig. 1. Similarly, by using a reduc
exposure time, one may sacrifice low-light detail in e
change for improved detail in areas of high illumination,
demonstrated toward the bottom of Fig. 1. However, if t
photographer desires an accurate representation of
low- and high-light areas of the scene, and the dynam
range of the scene exceeds that of the camera, then
futile to adjust the exposure time—detail will definitely b
lost, and varying the exposure time merely allows so
control over where the loss occurs.

Examination of a scene’s histogram offers further insig
into the problem. Suppose that a scene has an inten
histogram, as shown in Fig. 2, which has concentrations
intensities around relatively dark and relatively bright le
els, with maximum intensityI max. For simplicity, assume
that the output of the camera is a linear function of inp
exposure, and that a uniform quantizer withK levels is
used to produce the digital output. A photographer mig
adjust the exposure settings such that 1/3I max maps to satu-
ration, which emphasizes the dark regions of the sce
Doing this yields quantization intervals of 1/3K21I max. If
the photographer wants to capture the bright portions of
scene as well, he or she might reduce the exposure,
that 2/3I max maps to saturation. Doing this captures a larg
range of intensity values than the previous exposure sett
However, the quantization intervals are no
2/3K21I max—the dark regions are captured, but inform
tion is lost due to coarser quantization. We propose
method for combining data from multiple exposures
form an image with improved dynamic range, which tak
advantage of the favorable qualities of each of the in
vidual exposures.

There are a number of situations where one will ha
multiple exposures of a scene available. As already m
tioned, a photographer might wish to accurately capt
one particular scene and intentionally vary the exposu
such that the set of images, taken as a whole, captures

2;
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Robertson, Borman, and Stevenson
entire dynamic range of the scene. Unintentional situati
also arise: when using cameras with automatic exposure~or
gain! control, a particular exposure~gain! might be auto-
matically selected for one portion of the scene. Howeve
one pans the camera to a different part of the scene~with
the intention of, for example, creating a panoramic pict
by stitching multiple pictures together!, the automatic ex-

Fig. 1 ‘‘Studio’’ scene. Eight pictures of a static scene taken at dif-
ferent exposure times, photographed using a Nikon E2N digital
camera with aperture f/6.7. The original image resolution is 1280
31000. The exposure times are, from brightest to darkest, 1

8, 1
15,

1
30, 1

60, 1
125, 1

250, 1
500, and 1

1000 s.

Fig. 2 Example histogram of real-world scene intensities, with arbi-
trary intensity units.
220 / Journal of Electronic Imaging / April 2003 / Vol. 12(2)
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posure or gain can change, especially for scenes with b
very bright and very dark areas. The same possibility ex
for panning a video camera across a scene. In the gen
case of camera zooming, panning, tilting, and rotat
about its optical axis, it would be necessary to register
images to bring them into proper alignment with each oth
This work does not consider this general case, but ra
restricts itself to static scenes with no~or very little! camera
motion; see Ref. 1 for details of registration assuming p
jective transformation among the images. The issue of
tomatic gain will be briefly addressed again in Secs. 2 a
3.

One of the first researchers to investigate improved
namic range imaging was Wyckoff,2 who worked with film
rather than digital images. Wyckoff’s special film contain
multiple layers that responded differently with respect
exposure, but the same spectrally. Thus each layer wo
have a different speed and could, for example, captur
different portion of the intensity histogram in Fig. 2—on
layer might accurately capture the bright regions, one la
might accurately capture the dark regions, and a third la
might capture intensities between the two extremes.
though each layer had identical spectral characteristics,
final image could be viewed in a pseudocolor fashion
printing each layer as one of the three primary colors.

The first report of digitally combining multiple picture
of the same scene to improve dynamic range appears t
Mann.3 Algorithmic detail that is lacking from Ref. 3 is
provided in a later publication,4 where Mann and Picard
explicitly examine the situation where multiple picture
each of different exposures, are taken of a scene. T
provide a method of merging these multiple exposures
form a single image with an effective dynamic ran
greater than that of the camera. By making use of certa
functions, which give a measure of the confidence in
observation, Mann and Picard weight the observations fr
the various exposures to provide the final image. The c
tainty function for a particular camera is computed as
derivative of the camera response function, which result
low confidence for pixel values near extremes, and hig
confidence for pixel values between these extremes. M
detail of certainty functions is provided in later sections

Madden5 also examined the dynamic range proble
specifically for the case of CCD capture devices. Us
direct CCD output allowed Madden to assume a linear
sponse function for the camera, i.e., the observed ou
value is linearly related to the input exposure. Madd
takes multiple pictures of the same scene while varying
exposure time, and uses these multiply-exposed image
construct the final high dynamic range image. To determ
the value of a high dynamic range pixel, information
used from only that input image taken at the highest ex
sure in which the pixel of interest was not saturated. T
author justifies this by pointing out that pixels observed
higher exposure times have less quantization noise tha
pixels taken at lower exposure times.

Yamada, Nakana, and Yamamoto6,7 studied the dynamic
range problem in the context of vision systems for vehicl
The authors use multiple exposures of a scene, and ass
a linear response for the CCDs. The authors pick the fi
pixel output based only on the observation with the long
exposure time that is not saturated. While not explici



st
me
.
t o
tat
Th

ma
ly

me

for
ge

ual
t

in
u-
th

f
res

a
f th
ed
Th
re

ex

e-
is

ia
5
re
to

-
p-
m-
ita
of
ar
ri-

as-

o-
ne
the

ted
g
fec
the
es
ake
ge
al-
ld

. 4
ed

the
the
the
ate

ess
the
ves

ic
d is
ef.
a

he
nc-
ting
at
the

ble
hts
m

his
of
re-
efs.
how

l re-
re-

th

ght

-
is

red
en-
der

ince
ues
-
tu-
he

se
ar
ana-
e
nt-
er
e
of
er-

Estimation-theoretic approach to dynamic range enhancement . . .
giving justification for using only data from the highe
nonsaturated exposure, the implicit justification is the sa
as that mentioned before—to reduce quantization error

Moriwaki8 examined the dynamic range enhancemen
color images. The author uses multiple exposures of a s
scene, and also assumes a linear CCD response.
method employed is similar to Yamada, Nakana, and Ya
moto, in that the color values for a pixel are taken on
from the observation pixel with the highest exposure ti
that was not saturated.

Chen and Mu9 suggest using a cut-and-paste method
increasing dynamic range, where blocks of the final ima
are taken from blocks of the input images in a man
manner. The authors propose this interactive method
avoid more complicated, and perhaps nonlinear, process
This technique is obviously very limited, and any comp
tational advantage is clearly lost when one considers
computational resources available today.

Debevec and Malik10 offer a more advanced method o
increasing image dynamic range using multiple exposu
Rather than assuming a linear camera response, they
sume an arbitrary response that is determined as part o
algorithm. The final output pixel is given as a weight
average of the input pixels taken at different exposures.
algorithm gives higher weight to input data that are nea
to the mean of the input pixel range~128 for 8-bit data!,
and less weight to the input data that are near to the
tremes of the input pixel range~0 and 255 for 8-bit data!.

There are several limitations of the algorithms just d
scribed. In Ref. 9, the requirement of human intervention
an obvious drawback. The work of Ref. 2 required spec
film, and is not suitable for digital imagery. In Refs.
through 8, linear camera response functions are all
quired. While one might argue that this is justified due
the linear nature of CCDs11 there are still potential prob
lems. First, one is strictly limited to using only linear ca
ture devices, which precludes the possibility of using i
ages scanned from film. Second, while consumer dig
cameras do typically use CCDs, there is no guarantee
linear response—for while the actual CCDs may be line
the camera manufacturer is likely to introduce nonlinea
ties prior to output to make the image more visually ple
ing.

There is also a fundamental limitation when an alg
rithm determines the light values using data from only o
input source, rather than using all input data. Recall that
main motivation for using only the highest nonsatura
input pixel is to try to minimize quantization error. Takin
the approaches in Refs. 5–8 would indeed make per
sense if quantization were the only source of noise in
image capture process. However, there are other sourc
noise present in the image capture process, and it m
more sense to compute an estimate that takes advanta
all available data. If there is higher confidence in data v
ues taken at higher exposures, then these data shou
weighted more heavily in the estimation process.

An averaging process is indeed what is done in Refs
and 10 However, in Ref. 4, a parametric form is assum
for the response function, restricting the application of
method to a limited number of situations. Furthermore,
weighting procedure does not take into consideration
quantization effects. While Ref. 10 does form an estim
f
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of the nonlinear response function, the weighting proc
for the output values does not take into consideration
quantization effects discussed previously, and thus lea
room for improvement.

We propose a new method of increasing the dynam
range of images by using multiple exposures; the metho
an extension of work first presented by the authors in R
12. The probabilistic formulation of the problem results in
solution that satisfactorily deals with the problems of t
algorithms reported before. In particular, the response fu
tion of the image capture device is estimated, thus crea
versatility in our algorithm that is lacking in algorithms th
assume a linear or parametric response. Estimation of
high-dynamic range pixel takes advantage of all availa
data by performing a weighted average. Proper weig
arise from the problem formulation, allowing data fro
higher exposure times to be weighted more heavily.

Section 2 introduces the observation model for t
work. Section 3 gives the maximum likelihood solution
the high dynamic range image for a known camera
sponse, which includes situations such as those in R
5–8. For unknown camera response, Sec. 4 discusses
the response function can be estimated. Experimenta
sults are presented in Sec. 5, followed by concluding
marks in Sec. 6.

2 Observation Model

Assume there areN pictures taken of a static scene, wi
known exposure timest i ,i 51,...,N. Each image consists
of M pixels, and thej ’ th pixel of the i ’ th exposed image
will be denotedyi j ; the set$yi j % represents the known
observations. The goal is to determine the underlying li
values or irradiances, denoted byxj , that gave rise to the
observationsyi j . Note that theN images must be properly
registered, so that for a particulara, the light valuexa

contributes toyia ,i 51,...,N. For this work, a normalized
cross-correlation function13 is used as the matching crite
rion to register images to 1/2-pixel resolution. Since th
work considers only still imagery, the images are registe
assuming a global translational model. For the more g
eral case of motion imagery, one would need to consi
more complicated motion models~e.g., affine or projective
transformations!.

There is a response function, denoted here byf (•), that
maps exposure values to the observed output data. S
only the exposure time is being varied, the exposure val
that are arguments off (•) are products of time and irradi
ance,t ixj . Note that the camera response function is ac
ally the composition of various functions, depending on t
method of image capture. For a digital camera,f (•) might
consist of the composition of the linear CCD respon
function, analog-to-digital conversion, and any nonline
processing added by the camera manufacturer. For an
log camera,f (•) would consist of the composition of th
film’s response function, the response function of the pri
ing process~if the images are scanned from prints, rath
than from the actual film!, and the response function of th
scanning device, which itself consists of the composition
several more functions. Here, the only concern is the ov
all composite response functionf (•) and not any of its
individual elements.
Journal of Electronic Imaging / April 2003 / Vol. 12(2) / 221
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Robertson, Borman, and Stevenson
Since only the exposure time is being varied, the qu
tity contributing to the output valueyi j will be t ixj . To
account for image capture noise, an additive noise termNi j

c

is introduced, which also contributes to the observed p
values. Depending on the system used to capture the im
Ni j

c could come from a variety of sources, such as pho
shot noise, dark current noise, and noise in the analog
digital conversion process, for example. The quantityt ixj

1Ni j
c is then mapped by the camera’s response func

f (•) to give the observed output values

yi j 5 f ~ t ixj1Ni j
c !. ~1!

Sinceyi j are digital numbers,f (•) maps the nonnegativ
real numbers representing exposuresR15@0,̀ ) to an in-
terval of integers,O5$0,...,255% for 8-bit data. Without
loss of generality, this work assumes the image data a
bits. The camera response function is explicitly written

f ~z!5H 0 if zP@0,I 0#

m if zP~ I m21 ,I m#,m51,...,254

255 if zP~ I 254,`!,

, ~2!

and thusf (•) is defined in terms of the 255 numbersI m ,
m50,...,254. Figure 3 shows an examplef (•). For a linear
response function, such as in Refs. 5 through 8, theI m
values would be evenly spaced~on a linear scale!; in gen-
eral, however, this will not be true.

In practice, due to camera~or film and scanner! charac-
teristics and noise, the useful range of observations may
encompass the entire range@0,255#. For example, in the
absence of light, one would expect the camera output to
0, but in reality it may be some other small number, such
3. Similarly, for an exceedingly bright light source, on
would expect an output of 255, when in practice one mi
only observe a value of 253. Such behavior could res
from a variety of causes, such as CCD dark current or lo
compression employed by a digital camera. To account
these scenarios, the histogram of an input dataset is ex
ined during estimation of the response function. For a se

Fig. 3 Example camera response function, f(•), with logarithmic
exposure scale. The inset shows a close-up view near the origin and
demonstrates the discrete nature of f(•).
222 / Journal of Electronic Imaging / April 2003 / Vol. 12(2)
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exposures that includes both highly underexposed
highly overexposed images~as would be recommende
when estimating a response function!, there should be sig-
nificant peaks near 0 and 255 that indicate a zero point
a saturation point. The response function of Eq.~2! is thus
modified, such that allowable output pixels belong to th
slightly restricted range. Section 5 shows example his
grams with limited output ranges.

The shown model assumes that only the exposure t
varies between images. However, if one is using a cam
~still or video! with automatic exposure and gain contro
the model could be modified, such that thet i values incor-
porate both exposure time and gain. Thet i would then no
longer strictly represent time, but would instead repres
composite gains that multiply the irradiancesxj . This work
does not explicitly consider such situations, since it is
sumed that the photographer is using a camera that all
full control over exposure.

3 High Dynamic Range Image with Known
Response Function

In some situations, the response function of the image c
ture system is known. If one has access to direct C
output, then one knows that the response is a linear fu
tion of exposure,11 as was the case in Refs. 5 through
This section shows how to obtain high dynamic range i
age data with known response function. For the gene
situation, where direct CCD output is unavailable or whe
a film camera is used, Sec. 4 shows how to obtain
response function for arbitrary image capture syste
Once the response function is known, then the method
this section can be applied directly.

The goal is to estimate the irradiancesxj with a dynamic
range higher than that of the original observations. If t
function f (•) is known, a mapping fromO to R1 can be
defined as

f 21~yi j !5t ixj1Ni j
c 1Ni j

q 5I yi j
. ~3!

When determiningf 21(m), one knows only that it belongs
to the interval (I m21 ,I m#. TheNi j

q noise term here account
for the uncertainty in assigningf 21(m)5I m , and is a de-
quantization error. One should keep in mind thatf 21(•) is
not a true inverse, sincef (•) is a many-to-one mapping.

Rewriting Eq.~3!,

I yi j
5t ixj1Ni j . ~4!

The noise termNi j consists of the noise term introduced
Sec. 2, as well as the dequantization uncertainty termNi j

q .
Note that accurately characterizing the noise termsNi j
would be extremely difficult, as it would require detaile
knowledge of the specific image capture process being
ployed. One would have to characterize each of the se
rate noise sources that composeNi j , which would be a
complicated task that would have to be performed e
time a different image capture system is used. Furtherm
if different noise models are found for different captu
devices, then entirely different estimators would resu
Rather than attempt this, theNi j will be modeled as zero-
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Estimation-theoretic approach to dynamic range enhancement . . .
mean independent Gaussian random variables, with v
ancess i j

2 . The Gaussian approximation is valid due to t
potentially large number of noise sources present: all
noise sources inherent to acquiring digital images, e
dark current noise, photon shot noise, amplifier noise,
ADC noise; if a traditional camera is used, there is no
inherent to film, e.g., photon shot noise and film grain; a
the dequantization noiseNi j

q .
Note that even with the Gaussian simplifying appro

mation, the noise variancess i j
2 would be difficult to char-

acterize accurately. Again, detailed knowledge of the im
capture process would be required, and the noise chara
ization would have to be performed each time a differ
image capture device is used. Alternatively, one could
tempt to characterize the noise experimentally; howe
this would be a burdensome task to perform with ev
image capture system. Therefore, rather than attemptin
ther of these approaches, the variances will be chosen b
on certainty functions.

It will be convenient in the following to replace the var
ances with weights,wi j 51/s i j

2 . The concept of weights is
intuitive, and serves to ease the notational burden.
weights are chosen based on the confidence that obse
data are accurate. An approach is taken here that is sim
to that of Mann and Picard.4 Recall from Sec. 1 that the
certainty function for a particular camera is determined
taking the derivative of the response function. In are
where the response function is approximately flat, its c
tainty will be very small. Similarly, high certainty function
occur when the response function is steep. For a resp
function, such as the example from Fig. 3, the certai
function is approximately zero near the extrema, and la
near the middle of its response range. This work uses
certainty function as the weighting function.

To determine the certainty function, the derivative of t
response function is taken with a logarithmic exposure a
Note that the response functionf (•) is not a continuous
function, so a numerical approximation must be calcula
instead. Here, the response function is approximated b
cubic spline with a moderate number of knots, from whi
the derivative is easy to calculate. To guarantee that z
weight is given to the extreme pixel values, the cubic spl
is constructed such that the first derivative is zero at the
end points. Again, note that the cubic spline approximat
is performed with a logarithmic exposure axis. The c
tainty function is then normalized, such that its maximu
value is unity. Once the certainty functionc(•) is deter-
mined, the weighting function becomes a function of t
pixel observations and the certainty function:wi j 5w(yi j )
5c(I yi j

). Section 5 provides experimental examples of d
termining the certainty function.

From Eq. ~4!, I yi j
are independent Gaussian rando

variables, and the joint probability density function can
written as

P~ I y!}expH 2
1

2 (
i , j

wi j ~ I yi j
2t ixj !

2J . ~5!

A maximum-likelihood~ML ! approach is taken to find th
high dynamic range image values. The maximu
i-

,
d
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ed
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e

e
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o

likelihood solution finds the valuesxj that maximize the
probability in Eq.~5!. Maximizing Eq.~5! is equivalent to
minimizing the negative of its natural logarithm, whic
leads to the following objective function to be minimized

O~x!5(
i , j

wi j ~ I yi j
2t ixj !

2. ~6!

Equation~6! is easily minimized by setting the gradien
¹O(x) equal to zero.~Note that if t i were unknown, one
could jointly estimatexj and t i by arbitrarily fixing one of
the t i , and then performing an iterative optimization of E
~6! with respect to bothxj and t i .) This yields

x̂ j5
( iwi j t i I yi j

( iwi j t i
2 , ~7!

the desired high dynamic range image estimate. Note
data from images taken with longer exposure times
weighted more heavily, as indicated by thet i term in the
numerator of Eq.~7!. Thus this method takes advantage
the quantization effects utilized in Refs. 5 through 8. Ho
ever, here a noise-reducing averaging is being perform
which utilizes data from all input pixels.

Equation ~7! requires that theI m values ~i.e., the re-
sponse function! be known. In general, however, the re
sponse function is not known. The following section d
scribes how to determine the response function, so tha
the future the results just presented can be applied dire

4 Unknown Response Function

Except in very specialized situations, the camera respo
function will not be known, and must be estimated.
determine the response function uniquely, the 255 val
I m , m50,...,254 must be found.

At first glance, one may consider directly using the o
jective function in Eq.~6! to determine theI m values
needed to define the response function. Note that to e
mate theI m values from Eq.~6!, the xj values are also
unknown and need to be estimated simultaneously. Th
the objective function for the case of an unknown respo
function is

Õ~ I,x !5(
i , j

wi j ~ I yi j
2t ixj !

2. ~8!

An additional constraint on the response function is
quired when estimatingI andx together using Eq.~8!. This
restriction onf (•) is in regard to scale. The goal here is n
to determine absolute irradiance values, so issues rela
to physical units are avoided. It is sufficient to determi
the high dynamic range image to within a scale factor,
then the range of values found can be mapped to any
sired interval. Since the scale ofx̂ j is dependent on the
scale ofI m , the estimates for theI m values are constrained

such thatÎ 12851.0. This is enforced by dividing eachÎ m by

Î 128.
Since the response function is not yet known, t

weighting function~determined by differentiation of the re
sponse! is not known either. Rather than jointly attemptin
Journal of Electronic Imaging / April 2003 / Vol. 12(2) / 223
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Robertson, Borman, and Stevenson
to estimatewi j , I m , andxj , the weighting function will be
fixed a priori. ~With so many unknowns, the estimatio
quickly becomes intractable, especially considering the
pendence ofwi j on I m .) Figure 4 shows the weighting
function used for determination of the camera respon
This weighting function is the same one used in Ref.
and similar to the one used in Ref. 10. Note, however, t
the weighting functions used in Refs. 10 and 12 were u
for determining both response function and image e
mates, whereas here the weighting function of Fig. 4
being used to estimate the response function, while the
tainty function is being used to estimate actual high d
namic range images.

A form of Gauss-Seidel relaxation14 is used to determine
the solution. Seidel relaxation minimizes an objective fun
tion with respect to a single variable, and then uses th
new values when minimizing with respect to subsequ
variables. Here, Eq.~8! is first to be minimized with respec

Fig. 4 Weighting function for determination of camera response.
224 / Journal of Electronic Imaging / April 2003 / Vol. 12(2)
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to eachI m . Then the scale restriction mentioned before
enforced. Finally, Eq.~8! is minimized with respect to eac
xj , which constitutes one iteration of the algorithm.

Estimates for the variables of interest at thel ’ th iteration

are denoted asÎ ( l ) and x̂( l ). The initial Î (0) is chosen as a

linear function, with Î 128
(0)51.0. The initial x̂(0) is chosen

according to Eq.~7!, using the initial linearÎ (0).
First, to minimize with respect toI m at thel ’ th iteration,

the partial derivative of Eq.~8! with respect toI m is taken
and set equal to zero. This yields

Î m
( l )5

( ( i , j )PEm
wi j t i x̂ j

( l 21)

( ( i , j )PEm
wi j

, ~9!

where the index setEm is defined as

Em5$~ i , j !:yi j 5m%, ~10!

the set of indices such thatm was observed for the inpu
images. However, sincewi j is constant for (i , j )PEm , Eq.
~9! simplifies to

Î m
( l )5

1

Card~Em! (
( i , j )PEm

ti x̂ j
( l 21) . ~11!

Card(Em) is the cardinality ofEm , i.e., the number of times

m was observed. Equation~11! is applied for eachÎ m
( l ) ,m

50,...,254.

After scaling the response function, such thatÎ 128
( l )

51.0, minimization is performed with respect to ea
xj , j 51,...,M by applying Eq.~7!,

x̂ j
( l )5

( iwi j t i Î yi j

( l )

( iwi j t i
2 . ~12!
Fig. 5 ‘‘Cushing’’ scene. Eleven pictures from inside Cushing Hall at the University of Notre Dame,
taken with a Nikon FM camera with aperture f/5.6. The original image resolution is 4503300. The
exposure times are, from brightest to darkest, 1, 1

2, 1
4, 1

8, 1
15, 1

30, 1
60, 1

125, 1
250, 1

500, and 1
1000 s.
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Fig. 6 Histograms of the input datasets. Left: Histogram of the Studio dataset. Right: Histogram of the
Cushing dataset (note the logarithmic scale for the Cushing histogram).
ro-
e

de
sh-

that
ere
as
This completes one iteration of the algorithm, and the p
cess is repeated until some convergence criterion is m
The convergence criterion used here is for the rate of
crease in the objective function to fall below some thre
old.
t.
-

5 Experimental Results

Figures 1 and 5 show series of photographed scenes
have wide dynamic ranges. The photographs in Fig. 1 w
taken with a digital camera. Since raw image output w
Fig. 7 Results for the Studio (left) and Cushing (right) datasets. Both smoothed and unsmoothed
response functions are shown on top, while the new weighting functions (which are the derivatives of
the smooth response functions) are on the bottom. In all four plots, the horizontal axis represents
exposure on a logarithmic scale. Note the difference between the weighting functions above and that
of Fig. 4. The units for the horizontal axis here are exposure, while those of Fig. 4 are pixel observa-
tions. The two are related by the response function.
Journal of Electronic Imaging / April 2003 / Vol. 12(2) / 225
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Robertson, Borman, and Stevenson
not available for this camera, the images were compres
at the highest JPEG quality setting, and the green c
planes were later extracted for use in these tests. The
tographs in Fig. 5 were taken with a traditional came
using slide film and scanned using a Leafscan-35 slide-
scanner. The Leafscan-35 allows one to maintain cons
exposure times between scans, as well as retaining
black and white points. Exposures of 1/30 s from Fig. 1 a
1/8 s from Fig. 5 represent photographs taken at what m
be considered ‘‘normal’’ exposure settings. From the fi
ures, one notices that there is little detail visible in eith
the very bright or the very dark regions. Simple contr
stretching in the dark regions results in noisy-looking i
age areas; contrast stretching in the very bright regi
does little good due to the saturated pixel values. Th
scenes such as these are excellent candidates for the
rithm discussed here.

Figure 6 shows histograms for the two input datasets
described in Sec. 2, the zero and saturation points are t
as the peaks of these two histograms. Limits for the Stu
scene were 4 and 254, and limits for the Cushing sc
were 0 and 255. For the Studio scene, the large numbe
observations that are less than 4 are probably due to
nonlinear nature of the JPEG compression.

Figure 7 shows the determined response functions
their derivatives for the Studio and Cushing datasets.
top row of the figure shows both the response functions
their cubic-spline fits. Note that the response functions
not linear functions, and thus the use of algorithms such
described in Refs. 5–8 would be inappropriate for either
these cameras. The bottom row of the figure shows
derivatives of the smoothed response functions, which
the new weighting functions to be utilized when using t
algorithm to determine high dynamic range pixels.

A visual aid for judging the quality of the estimates
given in Fig. 8, where 2-D histograms of the result a
shown. The plots are constructed based on high dyna
range pixel estimatesx̂ j , exposure timest i , and pixel ob-
servationsyi j . The column index for the histogram is take
as log(tix̂j), which represents an estimate of thei ’ th expo-
sure value of thej ’ th pixel, while the row index is simply
taken asyi j . Histogram counts are shown on a logarithm
scale. Ideally, the 2-D histogram would trace out a fi

Fig. 8 Two-dimensional response histograms of dimension 256
3256. Left: Studio dataset. Right: Cushing dataset. The indices to
the histogram are @ log(tix̂j),yij#, and the histogram counts are shown
on a logarithmic scale. Such 2-D histograms provide a visual indi-
cation of how well the data match the results. (Note that the right
figure is not as ‘‘bright’’ as the one on the left due to the higher
fraction of saturated observations, as shown in Fig. 6.)
226 / Journal of Electronic Imaging / April 2003 / Vol. 12(2)
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curve that exactly follows the camera response functi
However, due to noise, the fine curve is smeared. Also
fecting these histograms could be unmodeled compon
of the image acquisition process, such as the JPEG c
pression for the Studio scene. The response functions
quite visible in these plots, and bear obvious resemblan
to the response functions shown in Fig. 7.

The x̂ j values are the ultimate variables of interest. Aft
the response functions were determined, the final im
estimates were formed by the technique in Sec. 3. Disp
ing these high dynamic range images on devices of limi
dynamic range is a nontrivial undertaking. Methods fro
computer graphics literature can be found in Refs. 15–
However, the focus of this research is not the display
high dynamic range images, but rather the acquisition
high dynamic range images. The methods used here
visualization of high dynamic range images are not cho
to give the most ‘‘visually pleasing’’ image, but rather t
demonstrate the results of the proposed algorithm.

Two methods are chosen here for display of the h
dynamic range results. The first method is similar
gamma correction, and obeys the input-output relation

Fig. 9 High dynamic range output images for the Studio scene. Top:
Results after gamma modification, g50.01, and e50.001. Bottom:
Results after histogram equalization.
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Estimation-theoretic approach to dynamic range enhancement . . .
h~z!5H Az, z<e

Bzg2C, z.e
. ~13!

In this equation, input valuesz are assumed to be norma
ized to @0,1#. Imposing continuity ofh(z) and its first de-
rivative atz5e, as well as forcingh(1.0)51.0, allows Eq.
~13! to be uniquely defined by the parameterse andg. The
second method used here for display of high dynamic ra
images is simple histogram equalization.

Figures 9 and 10 show results for the Studio and Cu
ing scenes. It is readily apparent that the images show
these two figures contain significantly more informati
than any of the single input images from their respect
datasets—both bright and dark areas of the scenes
been captured to a single image. Note that the two meth
of visualization presented here are relatively simple, a
that the photographer would be free to adjust the image
his or her liking by, for example, fine tuning an inpu
output transformation, or performing an adaptive histogr
equalization.

For the example results just given, the response func
was first estimated using a large number of training imag
Note, however, that once the response function for a c
ture device has been determined, this process need n
repeated when using that device in the future. Although
shown here, Eq.~7! can be used with the determined r
sponse function to estimate the desired high dynamic ra
image values directly using fewer images.

Fig. 10 High dynamic range output images for the Cushing scene.
Top: Results after gamma modification, g50.01, and e50.0002.
Bottom: Results after histogram equalization.
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The high dynamic range images determined using
method outlined here have several advantages over si
images such as those in Figs. 1 or 5. The images obta
with the proposed method have decreased noise due to
averaging of pixel values from each of the input imag
Furthermore, they contain information in both low- an
high-light areas, since the high dynamic range images c
sist of data from each of the input images. They also h
higher weights for pixels at longer exposures, advanta
of which were described previously. Traditional image pr
cessing algorithms~e.g., contrast stretching, histogra
equalization, edge detection, etc.! can be applied to the high
dynamic range images with better results due to the
creased amount of information present.

6 Conclusion

This work has introduced a method of increasing the eff
tive dynamic range of digital images by using multiple pi
tures of the same scene taken with varying exposure tim
The technique is based on a probabilistic formulation.
necessary, the method first estimates the response fun
of the camera. Once the response function is known, h
dynamic range images can be directly computed. Th
high dynamic range images contain accurate represe
tions of both low- and high-light areas in the image, wi
decreased noise due to averaging of data from all the in
images.
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