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posed to light from the scene. Variation of the aperture is
not considered due to the effects of aperture on depth of
field. By increasing the exposure time, one may get a better
representation of low-light areas at the cost of losing infor-
mation in areas of high illumination; an example of this is
shown at the top of Fig. 1. Similarly, by using a reduced
exposure time, one may sacrifice low-light detail in ex-
change for improved detail in areas of high illumination, as
demonstrated toward the bottom of Fig. 1. However, if the
photographer desires an accurate representation of both
low- and high-light areas of the scene, and the dynamic

Abstract. We present a new approach for improving the effective
dynamic range of cameras by using multiple photographs of the
same scene taken with different exposure times. Using this method
enables the photographer to accurately capture scenes that contain
high dynamic range by using a device with low dynamic range,
which allows the capture of scenes that have both very bright and
very dark regions. We approach the problem from a probabilistic
standpoint, distinguishing it from the other methods reported in the
literature on photographic dynamic range improvement. A new
method is proposed for determining the camera’s response function,
which is an iterative procedure that need be done only once for a
particular camera. With the response function known, high dynamic
range images can be easily constructed by a weighted average of

the input images. The particular form of weighting is controlled by
the probabilistic formulation of the problem, and results in higher
weight being assigned to pixels taken at longer exposure times. The
advantages of this new weighting scheme are explained by com-
parison with other methods in the literature. Experimental results are
presented to demonstrate the utility of the algorithm. © 2003 SPIE
and IS&T. [DOI: 10.1117/1.1557695]

range of the scene exceeds that of the camera, then it is
futile to adjust the exposure time—detail will definitely be
lost, and varying the exposure time merely allows some
control over where the loss occurs.

Examination of a scene’s histogram offers further insight
into the problem. Suppose that a scene has an intensity

histogram, as shown in Fig. 2, which has concentrations of
intensities around relatively dark and relatively bright lev-
els, with maximum intensity .. FOr simplicity, assume
Intensity values of real-world scenes can have a very widethat the output of the camera is a linear function of input
dynamic range. This is particularly true for scenes that haveexposure, and that a uniform quantizer wkhlevels is
areas of both low and high illumination, such as transitions ysed to produce the digital output. A photographer might
between sunlit areas and areas in shadow, or when a lighgdjust the exposure settings such that 343maps to satu-
sourge IS V'S'Ele I trl‘_e ?’Cznde- Unfortunately, allér_nagle Cap-ration, which emphasizes the dark regions of the scene.
ture devices have a limited dynamic range. For digital cam-p,ing this yields quantization intervals of K3 . If

eras, the dynamic range is limited by properties of the y,o hhotographer wants to capture the bright portions of the
charge-coupled devidé€CD) and analog-to-digital conver- scerFl)e asgweKI)I, he or she might reduce t%e gxposure, such

sion (ADC); film characteristics limit the dynamic range of that 2/3 .., maps to saturation. Doing this captures a larger

traditional cameras. ange of intensity values than the previous exposure settin
When capturing a scene containing a dynamic range thal 9 y T pr P 9.
owever, the quantization intervals are now

exceeds that of the camera, there will be a loss of detail in 21 ; _

either the low-light areas, the high-light areas, or both. Onez./?’K. Imax—the dark regions are g:ap'Fured, but Informa-
may vary the exposure to control which light levels will be 10N iS lost due to coarser quantization. We propose a
captured, and hence which light levels will be lost due to Method for combining data from multiple exposures to
saturation of the camera’s dynamic range. This work only form an image with improved dynamic range, which takes
considers variation of the exposure time, i.e., the duration@dvantage of the favorable qualities of each of the indi-

for which the light sensing eleme€CD or film) is ex-  Vidual exposures. o ,
There are a number of situations where one will have

multiple exposures of a scene available. As already men-
tioned, a photographer might wish to accurately capture
one particular scene and intentionally vary the exposure,
such that the set of images, taken as a whole, captures the

1 Introduction

Paper 20066 received Aug. 10, 2000; revised manuscript received Jan. 7, 2002
accepted for publication Sep. 17, 2002.
1017-9909/2003/$15.00 © 2003 SPIE and IS&T.

Journal of Electronic Imaging / April 2003/ Vol. 12(2) /219



Robertson, Borman, and Stevenson

Fig. 1 “Studio” scene. Eight pictures of a static scene taken at dif-
ferent exposure times, photographed using a Nikon E2N digital

camera with aperture f/6.7. The original image resolution is 1280

X1000. The exposure times are, from brightest to darkest, % %

11 1
30, 60+ 125+ 250+ 500 and Togo S-

posure or gain can change, especially for scenes with both
very bright and very dark areas. The same possibility exists
for panning a video camera across a scene. In the general
case of camera zooming, panning, tilting, and rotating
about its optical axis, it would be necessary to register the
images to bring them into proper alignment with each other.
This work does not consider this general case, but rather
restricts itself to static scenes with far very little) camera
motion; see Ref. 1 for details of registration assuming pro-
jective transformation among the images. The issue of au-
tomatic gain will be briefly addressed again in Secs. 2 and
3.

One of the first researchers to investigate improved dy-
namic range imaging was Wyckdtwho worked with film
rather than digital images. Wyckoff's special film contained
multiple layers that responded differently with respect to
exposure, but the same spectrally. Thus each layer would
have a different speed and could, for example, capture a
different portion of the intensity histogram in Fig. 2—one
layer might accurately capture the bright regions, one layer
might accurately capture the dark regions, and a third layer
might capture intensities between the two extremes. Al-
though each layer had identical spectral characteristics, the
final image could be viewed in a pseudocolor fashion by
printing each layer as one of the three primary colors.

The first report of digitally combining multiple pictures
of the same scene to improve dynamic range appears to be
Mann? Algorithmic detail that is lacking from Ref. 3 is
provided in a later publicatiohwhere Mann and Picard
explicitly examine the situation where multiple pictures,
each of different exposures, are taken of a scene. They
provide a method of merging these multiple exposures to
form a single image with an effective dynamic range
greater than that of the camera. By making use of certainty
functions, which give a measure of the confidence in an
observation, Mann and Picard weight the observations from
the various exposures to provide the final image. The cer-
tainty function for a particular camera is computed as the
derivative of the camera response function, which results in
low confidence for pixel values near extremes, and higher

entire dynamic range of the scene. Unintentional situationsconfidence for pixel values between these extremes. More

also arise: when using cameras with automatic expasure

gain control, a particular exposur@ain might be auto-

detail of certainty functions is provided in later sections.
Maddenr? also examined the dynamic range problem,

matically selected for one portion of the scene. However, if specifically for the case of CCD capture devices. Using

one pans the camera to a different part of the scaiith

direct CCD output allowed Madden to assume a linear re-

the intention of, for example, creating a panoramic picture sponse function for the camera, i.e., the observed output

by stitching multiple pictures togetherthe automatic ex-

Histogram

25 Imax %5 Tinax Tmax
Real-world intensity

Fig. 2 Example histogram of real-world scene intensities, with arbi-
trary intensity units.
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value is linearly related to the input exposure. Madden
takes multiple pictures of the same scene while varying the
exposure time, and uses these multiply-exposed images to
construct the final high dynamic range image. To determine
the value of a high dynamic range pixel, information is
used from only that input image taken at the highest expo-
sure in which the pixel of interest was not saturated. The
author justifies this by pointing out that pixels observed at
higher exposure times have less quantization noise than do
pixels taken at lower exposure times.

Yamada, Nakana, and Yamambfwtudied the dynamic
range problem in the context of vision systems for vehicles.
The authors use multiple exposures of a scene, and assume
a linear response for the CCDs. The authors pick the final
pixel output based only on the observation with the longest
exposure time that is not saturated. While not explicitly
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giving justification for using only data from the highest of the nonlinear response function, the weighting process
nonsaturated exposure, the implicit justification is the samefor the output values does not take into consideration the
as that mentioned before—to reduce quantization error.  quantization effects discussed previously, and thus leaves
Moriwaki® examined the dynamic range enhancement of room for improvement.
color images. The author uses multiple exposures of a static We propose a new method of increasing the dynamic
scene, and also assumes a linear CCD response. Theange of images by using multiple exposures; the method is
method employed is similar to Yamada, Nakana, and Yama-an extension of work first presented by the authors in Ref.
moto, in that the color values for a pixel are taken only 12. The probabilistic formulation of the problem results in a
from the observation pixel with the highest exposure time solution that satisfactorily deals with the problems of the
that was not saturated. algorithms reported before. In particular, the response func-
Chen and Mﬂsuggest using a cut-and-paste method for tion of the image capture device is estimated, thus creating
increasing dynamic range, where blocks of the final image versatility in our algorithm that is lacking in algorithms that
are taken from blocks of the input images in a manual @ssume a linear or parametric response. Estimation of the
manner. The authors propose this interactive method tohigh-dynamic range pixel takes advantage of all available
avoid more complicated, and perhaps nonlinear, processingdata by performing a weighted average. Proper weights
This technique is obviously very limited, and any compu- arise from the problem formulation, allowing data from
tational advantage is clearly lost when one considers thehigher exposure times to be weighted more heavily.
computational resources available today. Section 2 introduces the observation model for this

Debevec and Mali¥ offer a more advanced method of WOrk. Section 3 gives the maximum likelihood solution of
increasing image dynamic range using multiple exposures € high dynamic range image for a known camera re-
sponse, which includes situations such as those in Refs.

Rather than assuming a linear camera response, they a .
sume an arbitrary response that is determined as part of thg —8: FOr unknown camera response, Sec. 4 discusses how
the response function can be estimated. Experimental re-

algorithm. The final output pixel is given as a weighted | ; .
average of the input pixels taken at different exposures. TheSUltS are presented in Sec. 5, followed by concluding re-

algorithm gives higher weight to input data that are nearer Marks in Sec. 6.

to the mean of the input pixel rand&28 for 8-bit data, .

and less weight to thep ingut data gt(hat are near to the ex-2 Observation Model

tremes of the input pixel rang® and 255 for 8-bit daja Assume there ar®l pictures taken of a static scene, with
There are several limitations of the algorithms just de- known exposure timeg ,i=1,...N. Each image consists

scribed. In Ref. 9, the requirement of human intervention is gf M pixels, and thg th pixel of thei’th exposed image

an obvious drawback. The work of Ref. 2 required special \jj| pe denotedy;; ; the set{y;;} represents the known

film, and is not suitable for digital imagery. In Refs. 5 qpservations. The goal is to determine the underlying light

through 8, linear camera response functions are all re- 5,65 or jrradiances, denoted Ry, that gave rise to the

quired. While one might argue that this is justified due to ; } :
the linear nature of CCDSthere are still potential prob- observationy/;; . Note that theN images must be properly
registered, so that for a particular, the light valuex,

lems. First, one is strictly limited to using only linear cap- i i1 hi K lized
ture devices, which precludes the possibility of using im- CONUIOUtES toyiq .1 =1,... N. For this work, a normalize
cross-correlation functid is used as the matching crite-

ages scanned from film. Second, while consumer digital ~ ! . . ) ; .
cameras do typically use CCDs, there is no guarantee of 410N 0 register images to 1/2-pixel resolution. Since this
linear response—for while the actual CCDs may be linear work considers only still imagery, the images are registered

the camera manufacturer is likely to introduce nonlineari- 25SUming a global translational model. For the more gen-

ties prior to output to make the image more visually pleas- €@l case of motion imagery, one would need to consider
ing more complicated motion mode(s.g., affine or projective
There is also a fundamental limitation when an algo- transformations

rithm determines the light values using data from only one | N€re is a response function, denoted heré by, that
input source, rather than using all input data. Recall that theMaPS exposure values to the observed output data. Since

main motivation for using only the highest nonsaturated ON!Y the exposure time is being varied, the exposure values
input pixel is to try to minimize quantization error. Taking that are arguments df(-) are products of time and irradi-
the approaches in Refs. 5-8 would indeed make perfecince.t;x;. Note that the camera response function is actu-
sense if quantization were the only source of noise in theally the composition of various functions, depending on the
image capture process. However, there are other sources dgnhethod of image capture. For a digital camefia,) might
noise present in the image capture process, and it makegonsist of the composition of the linear CCD response
more sense to compute an estimate that takes advantage &fnction, analog-to-digital conversion, and any nonlinear
all available data. If there is higher confidence in data val- processing added by the camera manufacturer. For an ana-
ues taken at higher exposures, then these data should beg camera,f(-) would consist of the composition of the
weighted more heavily in the estimation process. film’'s response function, the response function of the print-

An averaging process is indeed what is done in Refs. 4ing procesd(if the images are scanned from prints, rather
and 10 However, in Ref. 4, a parametric form is assumedthan from the actual fill and the response function of the
for the response function, restricting the application of the scanning device, which itself consists of the composition of
method to a limited number of situations. Furthermore, the several more functions. Here, the only concern is the over-
weighting procedure does not take into consideration theall composite response functioi(-) and not any of its
quantization effects. While Ref. 10 does form an estimateindividual elements.
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exposures that includes both highly underexposed and

25 highly overexposed image&@s would be recommended
when estimating a response functipthere should be sig-
nificant peaks near 0 and 255 that indicate a zero point and

o _____ \ a saturation point. The response function of Ej.is thus

’g : I modified, such that allowable output pixels belong to this

2 ! \ slightly restricted range. Section 5 shows example histo-

% 5 4 — grams with limited output ranges.

= 4 4 — The shown model assumes that only the exposure time

g T T | varies between images. However, if one is using a camera
14 —_— ! (still or video) with automatic exposure and gain control,
1---, 0t —F == the model could be modified, such that thevalues incor-
! ! 1"0 141' 1*2 13 I4 . .
| | porate both exposure time and gain. Tthevould then no
T exposure, tX; 125'4 longer strictly represent time, but would instead represent
composite gains that multiply the irradianogs This work
Fig. 3 Example camera response function, f(-), with logarithmic does not explicitly consider such situations, since it is as-
exposure scale. Thg inset shows a close-up view near the origin and sumed that the photographer is using a camera that allows
demonstrates the discrete nature of f(-). full control over exposure.

) . _ . 3 High Dynamic Range Image with Known
Since only the exposure time is being varied, the quan- Response Function

tity contributing to the output valug;; will be tix;. To

. . . ' In some situations, the r nse function of the im -
account for image capture noise, an additive noise ijm some situations, the response function of the image cap

i introduced. which al b he ob d oi Iture system is known. If one has access to direct CCD
Is Introduced, which also contributes to the observed piXel o1t then one knows that the response is a linear func-

values. Depending on the system used to capture the imagg;on of exposuré! as was the case in Refs. 5 through 8.

Njj could come from a variety of sources, such as photonThjs section shows how to obtain high dynamic range im-
shot noise, dark current noise, and noise in the analog-toage data with known response function. For the general
digital conversion process, for example. The quartiity ~  situation, where direct CCD output is unavailable or where
+Ni°j is then mapped by the camera’s response functiona film camera is used, Sec. 4 shows how to obtain the

f(-) to give the observed output values response function for arbitrary image capture systems.
Once the response function is known, then the methods of
yij = (tix; + Nﬁ)- (1) this section can be applied directly.

The goal is to estimate the irradianogswith a dynamic
Sincey;; are digital numbersf(-) maps the nonnegative range higher.than that of the Qriginal observations. If the
real numbers representing exposud&s=[0) to an in-  function f(-) is known, a mapping fron0 to R" can be
terval of integers,©={0,...,255 for 8-bit data. Without ~ defined as
loss of generality, this work assumes the image data are 8 _

bits. The camera response function is explicitly written as f l(Yij):tixj + ij * Niqj :lyij- ©)
0 if ze[0,lo] When determinind ~1(m), one knows only that it belongs
f(z)={ m if ze(Iy-1,Im),m=1,...,254 (7 totheinterval (;_y,lm]. TheN{ noise term here accounts

for the uncertainty in assigning }(m)=1,,, and is a de-

quantization error. One should keep in mind that(-) is

not a true inverse, sincH-) is a many-to-one mapping.
Rewriting Eq.(3),

255 if ze (1,54,%),

and thusf(-) is defined in terms of the 255 numbdis,
m=0,...,254. Figure 3 shows an examp(e). For a linear
response function, such as in Refs. 5 through 8, Ithe
values would be evenly spacédn a linear scalg in gen-

eral, however, this will not be true. The noise tern;; consists of the noise term introduced in
In practice, due to camef@r film and scanngrcharac- X

teristics and noise, the useful range of observations may noSe¢: 2 as well as the dequantization uncertainty #ffn
encompass the entire ran@255. For example, in the Note that accurately characterizing the noise tefhs
absence of light, one would expect the camera output to bevould be extremely difficult, as it would require detailed
0, but in reality it may be some other small number, such asknowledge of the specific image capture process being em-
3. Similarly, for an exceedingly bright light source, one ployed. One would have to characterize each of the sepa-
would expect an output of 255, when in practice one might rate noise sources that composg, which would be a
only observe a value of 253. Such behavior could resultcomplicated task that would have to be performed each
from a variety of causes, such as CCD dark current or lossytime a different image capture system is used. Furthermore,
compression employed by a digital camera. To account forif different noise models are found for different capture
these scenarios, the histogram of an input dataset is examdevices, then entirely different estimators would result.
ined during estimation of the response function. For a set ofRather than attempt this, th¢; will be modeled as zero-

yij:tixj+Nij . (4)
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mean independent Gaussian random variables, with varidikelihood solution finds the values; that maximize the

ancearﬁ . The Gaussian approximation is valid due to the probability in Eqg.(5). Maximizing Eq.(5) is equivalent to

potentially large number of noise sources present: all theminimizing the negative of its natural logarithm, which

noise sources inherent to acquiring digital images, e.g.,leads to the following objective function to be minimized:

dark current noise, photon shot noise, amplifier noise, and

ADC noise;.if a traditional camera i_s used, t_here is noise ox)=> Wij(ly--_tixj)z- (6)

inherent to film, e.g., photon shot noise and film grain; and i i

the dequantization nois{} . _ . o . _
Note that even with the Gaussian simplifying approxi- _ Equation(6) is easily minimized by setting the gradient

mation, the noise variances’ would be difficult to char- ~ VO(x) equal to zero(Note that ift; were unknown, one

acterize accurately. Again, detailed knowledge of the imagecould jointly estimatex; andt; by arbitrarily fixing one of

capture process would be required, and the noise charactethet;, and then performing an iterative optimization of Eq.

ization would have to be performed each time a different (6) with respect to bottx; andt;.) This yields

image capture device is used. Alternatively, one could at-

tempt to characterize the noise experimentally; however, EiWijtilyi,-

this would be a burdensome task to perform with every Xi= 5\ 2 (7)

image capture system. Therefore, rather than attempting ei- o

ther of these approaches, the variances will be chosen baseghe desired high dynamic range image estimate. Note that
on certainty functions. ,  data from images taken with longer exposure times are
It will be convenient in the following to replace the vari- weighted more heavily, as indicated by theterm in the
. . 2 . . 1
ances with weightsw;; = 1/aj;. The concept of weights is  numerator of Eq(7). Thus this method takes advantage of
intuitive, and serves to ease the notational burden. Thethe quantization effects utilized in Refs. 5 through 8. How-

weights are chosen based on the confidence that observegver, here a noise-reducing averaging is being performed,
data are accurate. An approach is taken here that is similagvhich utilizes data from all input pixels.

to that of Mann and PicartiRecall from Sec. 1 that the Equation (7) requires that thd, values (i.e., the re-
certainty function for a particular camera is determined by gponse functionbe known. In general, however, the re-
taking the derivative of the response function. In areasgponse function is not known. The following section de-
where the response function is approximately flat, its cer-scripes how to determine the response function, so that in

tainty will be very small. Similarly, high certainty functions  the future the results just presented can be applied directly.
occur when the response function is steep. For a response

function, such as the example from Fig. 3, the certainty
function is approximately zero near the extrema, and large . o o
near the middle of its response range. This work uses theEXcept in very specialized situations, the camera response
certainty function as the weighting function. funct|0r_1 will not be known, and must be estimated. To
To determine the certainty function, the derivative of the determine the response function uniquely, the 255 values
response function is taken with a logarithmic exposure axis.!m, M=0,...,254 must be found.
Note that the response functidif-) is not a continuous At first glance, one may consider directly using the ob-
function, so a numerical approximation must be calculatedjective function in Eq.(6) to determine thel values
instead. Here, the response function is approximated by aeeded to define the response function. Note that to esti-
cubic spline with a moderate number of knots, from which mate thel, values from Eq.(6), the x; values are also
the derivative is easy to calculate. To guarantee that zeraunknown and need to be estimated simultaneously. Thus,
weight is given to the extreme pixel values, the cubic spline the objective function for the case of an unknown response
is constructed such that the first derivative is zero at the twofunction is
end points. Again, note that the cubic spline approximation
is performed with a logarithmic exposure axis. The cer- & _ - ty)2
tainty function is then normalized, such that its maximum Ox) ZJ W”(Iyij tx)" ®
value is unity. Once the certainty functia{-) is deter-
mined, the weighting function becomes a function of the  An additional constraint on the response function is re-
pixel observations and the certainty function; =w(y;;) quired when estimatingandx together using Eq(8). This
=c(ly, ). Section 5 provides experimental examples of de- restriction onf(-) is in regard to scale. The goal here is not
termining the certainty function. to dete(mlne a}bsolute |rr§d|ance.valuejs,_ SO issues relatmg
From Eq. (4), I, are independent Gaussian random to physmal units are avq|ded. It is §uff|C|ent to determine
i ij . i ) ) the high dynamic range image to within a scale factor, for
variables, and the joint probability density function can be {hen the range of values found can be mapped to any de-

4 Unknown Response Function

written as sired interval. Since the scale &f is dependent on the
1 scale ofl,,, the estimates for thg, values are constrained,
P(|y)ocexp{ - 52 wij (I —tx)%}. (5)  such thai;,g=1.0. This is enforced by dividing ea¢h, by
] i P
128-

Since the response function is not yet known, the
A maximum-likelihood(ML) approach is taken to find the weighting function(determined by differentiation of the re-
high dynamic range image values. The maximum- sponsgis not known either. Rather than jointly attempting
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1 to eachl,,. Then the scale restriction mentioned before is
/\ enforced. Finally, Eq(8) is minimized with respect to each
0.8 X;, which constitutes one iteration of the algorithm.
Estimates for the variables of interest at thé iteration
< 06 are denoted ak" and%(". The initial i%) is chosen as a
§ / \ linear function, withi{%=1.0. The initial X is chosen
04 according to Eq(7), using the initial linear (.
First, to minimize with respect th,, at thel'th iteration,
0.2 the partial derivative of Eq(8) with respect td ,, is taken
and set equal to zero. This yields
0 T T T T T T T o(I—-1)
0 32 64 96 128 160 192 224 10— 2(i,j) < £, Wij L] )
Pixel Value m= Z(I,J) eEmWij ’
Fig. 4 Weighting function for determination of camera response. where the index Seff,, is defined as
Em=1{(i,]):yjj=m}, (10

to estimatew;; , I, andx;, the weighting function will be o )
fixed a priori. (With so many unknowns, the estimation (€ set of indices such that was observed for the input
quickly becomes intractable, especially considering the de-images. However, sino;; is constant for {,j) € Er,, Eq.
pendence ofw;; on I,.) Figure 4 shows the weighting (9) simplifies to

function used for determination of the camera response. 1

This weighting function is the same one used in Ref. 12, 1{)=———— > t{"". (11)
and similar to the one used in Ref. 10. Note, however, that CardEm) (./)=En

the weighting functions used in Refs. 10 and 12 were usedCard(Em) is the cardinality o, , i.e., the number of times

for determining both response function and image esti- i ) i ()
mates, whereas here the weighting function of Fig. 4 is M was observed. Equatioill) is applied for each’,m

being used to estimate the response function, while the cer=0,...,254.
tainty function is being used to estimate actual high dy-  After scaling the response function, such tHb,

namic range Images. aa , =1.0, minimization is performed with respect to each
A form of Gauss-Seidel relaxatidhis used to determine i—1....M by applying Eq.(7)

the solution. Seidel relaxation minimizes an objective func- '’ e

tion with respect to a single variable, and then uses these EiWijtii\S}

new values when minimizing with respect to subsequentg(h) = 4

\ i Jesb . i 2 (12
variables. Here, E(8) is first to be minimized with respect 2wt

Fig. 5 “Cushing” scene. Eleven pictures from inside Cushing Hall at the University of Notre Dame,

taken with a Nikon FM camera with aperture f/5.6. The original image resolution is 450X 300. The
104

. . 111 11 1 1
exposure times are, from brightest to darkest, 1, 5, 7, §, 15 30, 80+ 125+ 250+ 500+ and Tgog S-
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Fig. 6 Histograms of the input datasets. Left: Histogram of the Studio dataset. Right: Histogram of the
Cushing dataset (note the logarithmic scale for the Cushing histogram).

This completes one iteration of the algorithm, and the pro-5 Experimental Results

cess is repeated until some convergence criterion is met
The convergence criterion used here is for the rate of de-
crease in the objective function to fall below some thresh-

old.

Figures 1 and 5 show series of photographed scenes that
have wide dynamic ranges. The photographs in Fig. 1 were

taken with a digital camera. Since raw image output was

256 256
— Smoothed
— Not Smoothed

192 192

— Smoothed
—— Not Smoothed

Response
-
N
@

Response
"
N
-]

0.1
Exposure

64 64
0 T 0
0.01 0.1 1 10 0.01
Exposure
0.8 \\ 0.8
« 0.6 - 0.6
B Ed
@ e
2 0.4 - ” 2 0.4
0.2 0.2
0 ‘ T 0
0.01 0.1 1 10 0.01
Exposure

Exposure

Fig. 7 Results for the Studio (left) and Cushing (right) datasets. Both smoothed and unsmoothed
response functions are shown on top, while the new weighting functions (which are the derivatives of
the smooth response functions) are on the bottom. In all four plots, the horizontal axis represents
exposure on a logarithmic scale. Note the difference between the weighting functions above and that
of Fig. 4. The units for the horizontal axis here are exposure, while those of Fig. 4 are pixel observa-

tions. The two are related by the response function.
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J/

Fig. 8 Two-dimensional response histograms of dimension 256
X 256. Left: Studio dataset. Right: Cushing dataset. The indices to
the histogram are [log(#%),y;], and the histogram counts are shown
on a logarithmic scale. Such 2-D histograms provide a visual indi-
cation of how well the data match the results. (Note that the right
figure is not as “bright” as the one on the left due to the higher
fraction of saturated observations, as shown in Fig. 6.)

not available for this camera, the images were compressed
at the highest JPEG quality setting, and the green color
planes were later extracted for use in these tests. The pho-
tographs in Fig. 5 were taken with a traditional camera
using slide film and scanned using a Leafscan-35 slide-film
scanner. The Leafscan-35 allows one to maintain constant
exposure times between scans, as well as retaining the
black and white points. Exposures of 1/30 s from Fig. 1 and
1/8 s from Fig. 5 represent photographs taken at what might
be considered “normal” exposure settings. From the fig-
ures, one notices that there is little detail visible in either
the very bright or the very dark regions. Simple contrast
stretching in the dark regions results in noisy-looking im-
age areas; contrast stretching in the very bright regions
does little good due to the saturated pixel values. ThUS,Fig.Q High dynamic range output images for the Studio scene. Top:
scenes such as these are excellent candidates for the alg®&esults after gamma modification, y=0.01, and €=0.001. Bottom:
rithm discussed here. Results after histogram equalization.
Figure 6 shows histograms for the two input datasets. As
described in Sec. 2, the zero and saturation points are taken
as the peaks of these two histograms. Limits for the Studio
scene were 4 and 254, and limits for the Cushing scene
were 0 and 255. For the Studio scene, the large number ofurve that exactly follows the camera response function.
observations that are less than 4 are probably due to thédiowever, due to noise, the fine curve is smeared. Also af-
nonlinear nature of the JPEG compression. fecting these histograms could be unmodeled components
Figure 7 shows the determined response functions andf the image acquisition process, such as the JPEG com-

their derivatives for the Studio and Cushing datasets. Thepression for the Studio scene. The response functions are
top row of the figure shows both the response functions andquite visible in these plots, and bear obvious resemblances
their cubic-spline fits. Note that the response functions areto the response functions shown in Fig. 7.
not linear functions, and thus the use of algorithms such as  The¥; values are the ultimate variables of interest. After
described in Refs. 5-8 would be inappropriate for either of the response functions were determined, the final image
these cameras. The bottom row of the figure shows theestimates were formed by the technique in Sec. 3. Display-
derivatives of the smoothed response functions, which arejng these high dynamic range images on devices of limited
the new weighting functions to be utilized when using the gynamic range is a nontrivial undertaking. Methods from
algorithm to determine high dynamic range pixels. ~ computer graphics literature can be found in Refs. 15—18.

_Avisual aid for judging the quality of the estimates is However, the focus of this research is not the display of
given in Fig. 8, where 2-D histograms of the result are pigh gynamic range images, but rather the acquisition of
shown. _The pIc_)ts are constructed_based on h|gh dynamlomgh dynamic range images. The methods used here for
range pixel estimate®;, exposure times;, and pixel ob-  yisyalization of high dynamic range images are not chosen
Servatlonglij . The column index for the hlStOgram is taken to give the most “Visua”y p|easing” image, but rather to
as log(%;), which represents an estimate of itith expo-  demonstrate the results of the proposed algorithm.
sure value of theg’th pixel, while the row index is simply Two methods are chosen here for display of the high
taken asy;; . Histogram counts are shown on a logarithmic dynamic range results. The first method is similar to
scale. ldeally, the 2-D histogram would trace out a fine gamma correction, and obeys the input-output relation
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Fig. 10 High dynamic range output images for the Cushing scene.
Top: Results after gamma modification, y=0.01, and e=0.0002.
Bottom: Results after histogram equalization.

Az, <€

h@=1g_c,

z>€ (13

In this equation, input values are assumed to be normal-
ized to[0,1]. Imposing continuity ofh(z) and its first de-
rivative atz= e, as well as forcind(1.0)= 1.0, allows Eq.
(13) to be uniquely defined by the parameterand y. The

second method used here for display of high dynamic range -,

images is simple histogram equalization.

The high dynamic range images determined using the
method outlined here have several advantages over single
images such as those in Figs. 1 or 5. The images obtained
with the proposed method have decreased noise due to the
averaging of pixel values from each of the input images.
Furthermore, they contain information in both low- and
high-light areas, since the high dynamic range images con-
sist of data from each of the input images. They also have
higher weights for pixels at longer exposures, advantages
of which were described previously. Traditional image pro-
cessing algorithms(e.g., contrast stretching, histogram
equalization, edge detection, gtcan be applied to the high
dynamic range images with better results due to the in-
creased amount of information present.

6 Conclusion

This work has introduced a method of increasing the effec-
tive dynamic range of digital images by using multiple pic-
tures of the same scene taken with varying exposure times.
The technique is based on a probabilistic formulation. If
necessary, the method first estimates the response function
of the camera. Once the response function is known, high
dynamic range images can be directly computed. These
high dynamic range images contain accurate representa-
tions of both low- and high-light areas in the image, with
decreased noise due to averaging of data from all the input
images.
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