You should be able to write a closed-form mathematical expression for any portion of these various curves, or similar other examples, in terms of any of the plots.
% consider g=f^2, having d.c. sol'n: log(f)=q, F=q, log(F)=Q. Q=linspace(-3,3,6000); q=2..^Q; logF=1/2/pi*sin(2*pi*Q) + Q; % sine plus slope F=2..^logF; f=2..^F; %% not used anywhere: F=log(f)/log(2); grid gset nokey xlabel('q') ylabel('f') qintegers=[1/8 1/4 1/2 1 2 4 8]; fintegers=2..^qintegers; ftrue=2..^q; subplot(241); axis(); % set axis to "normal" plot(q,f,qintegers,fintegers,'+',qintegers,fintegers,"*",q,ftrue) subplot(242); xlabel('q') ylabel('F') Fintegers=qintegers; Ftrue=q; plot(q,F,qintegers,Fintegers,'+',qintegers,Fintegers,"*",q,Ftrue) Qintegers=log(qintegers)/log(2); subplot(243); xlabel('Q') ylabel('logF') logFintegers=Qintegers; logFtrue=Q; plot(Q,logF,Qintegers,logFintegers,'+',Qintegers,logFintegers,"*",Q,logFtrue) subplot(244); % Periodizer is dlogF/dQ xlabel('Q') ylabel('dlogF/dQ') %%%axis([-3 3 -4 3]) Qt=Q(1:length(Q)-1); % Qtruncated dlogFdQ=1000*diff(logF); dlogFintegers=1*ones(size(Qintegers)); x=[-3 3]; y=[1 1]; plot(Qt,dlogFdQ,Qintegers,dlogFintegers,'+',Qintegers,dlogFintegers,'*',x,y) subplot(111);