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From eqn. 1 we obtain 

Hence, for the capacitance values 

CO = 3c, = 4 c 2  = 2 c ,  

we have 

(1  - 2 ~ ~ ) ~  

1 + z - ~  
AQb”(z) = CO ~ V~”(Z) 

and the total charge 

The charge of the analogue reference FDNR is given by the 
relation in the s domain 

D 
T 

Q0(s) = sDV,(S) 1 - sTV,(S) (6) 

It follows from eqns. 5 and 6 that for C,/2 = D/T we obtain 

I - z - ~  
1 + 1 - 4  

s T = 2 -  (7) 

This means that the SC circuit in Fig. la simulates an FDNR 
according to the bilinear s-z transformation. 

D is the constant factor in the FDNR with resistance R ,  = 
l/s2D. 

Omitting the capacitor C, (C, = 0) with the corresponding 
switches and changing the polarity by switching the capacitor 
CO from clock phase 3 to clock phase 4 we obtain 

= (1 - z-*)QS’(z) 

and the total charge 

(9) 

This means that such a circuit simulates a n  inductor as the 
charge of analogue reference inductor is given by the relation 
in the s domain 

and from eqns. 9 and 10 for 4C, = T 2 / L  we again obtain 

I - z - ~  
s T = 2 -  

1 + 2 - 4  

The equivalent inductance of this SC circuit is given by the 
relation Le = T2/4C,. Such a circuit is also presented in Ref- 
erences 1 and 2. 

A new SC FDNR controlled by four clock phases is pre- 
sented. The network with only one opamp and four capacitors 
is very economical. This FDNR can be used effectively in 
solving SC filters. 

22nd October 1991 
J. Mikula (Technical University, Bmo, Czechoslovakia) 

‘CHIRPLETS’ AND ’WARBLETS’: NOVEL 

S. M a n n  a n d  S. H a y k i n  

TIME-FREQUENCY METHODS 

Indexing terms. Radar, Transforms, Mathematical techniques 

A novel transform is proposed, which is an expansion of an 
arbitrary function onto a localised basis of multiscale chirps 
(swept frequency wave packets) for which the term ‘chirplets’ 
has been used. The wavelet transform is an expansion onto a 
basis of functions which are affine in the physical domain 
(e.g. time). In other words they are translates and dilates of 
one mother wavelet. The proposed basis is an extension of 
affinity, from the physical (time) domain, to the time- 
frequency domain. The basis includes both the wavelet and 
the short-time Fourier transform (STFT) as special cases (the 
degree of freedom modulation is simply attained through a 
translation in frequency). Furthermore, the bases include 
shear in time, and shear in frequency, leading to a broader 
class of chirping bases. Numerous practical applications of 
the chirplet have been found, such as in Doppler radar signal 
processing. 

The well-known wavelet transform was originally derived 
through one-dimensional affne transformations in the physi- 
cal (e.g. time) domain. Our proposed chirplet bases, however, 
are derived through the six 2-D affne transformations in the 
time-frequency (TF) plane. 

The chirplet transform thus has indexdimension up to 6t  
(depending on the particular ‘mother chirplet’ chosen), rather 
than 2, as is the case with the wavelet transform. Chirplet 
theory allows for a unified framework because it embodies 
many other TF methods as lower dimensional manifolds in 
chirplet space. For example, both the wavelet transform, and 
the short-time Fourier transform (STFT) are planar chirplet 
slices while many adaptive methods are two indexdimensional 
curved chirplet manifolds. 

‘Le pkpielette’: ‘The chirplet’: Y. Meyer is often said to he the 
‘father of wavelets’: it was he* who first coined the term 
<<ondelette>) (from the French word for wave, sondes, and the 
diminutive <<etten). The closest translation, ‘wavelet’, became 
the accepted word within papers written in the English lan- 
guage. 

We use the term qkpieletten (combining the diminutive 
with the French word <<pepier>> or <qkpiementn) to similarly 
designate a ‘piece of a chirp’. An English translation gives us 
the word ‘chirplet’. Fig. 1 shows that the relationship of a 
chirplet to a chirp is analogous to that of a wavelet t o  a wave. 

The first published reference1 is in Mann and Haykin [2]; 
the term also appears elsewhere in the literature [4].$ 

We propose a basis which consists of all the members of a 
particular time domain signal, which are atline transform- 
ations of each other when viewe4 in TF space. Philosophically 
there are two ways to think of this basis function: 

( I )  using the ‘piece-of-a-chirp’ framework 

t The high indexdimensionality may be dealt with either by examin- 
ing lower dimension manifolds, or by using an adaptive algorithm [I]  
* Edilor’s note. Or, according to some, A. Grossmann and J. Morlet 
1 Some of the work of Mann et al. 121 was presented briefly as part of 
‘Radar vision’ [3], prior to publication 
5 Editor’s note: There is some uncertainty regarding priority of 
coining the term ‘chirplet’. Interested readers should take into account 
the dates on which the papers were received 
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(2) thinking in terms of affine transformations in T F  space, 
which consist of dilations and 'chirpings' (in both time and 
frequency); we note that translations (modulations and delays) 
are just special cases of 'chirpings' (in time and frequency), 
where the chirp rate is zero 

real r w I  -4- 

*I12 , I 

-1R I 
t ime tlme 
(ill ) ( I V )  

+- 
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time time 
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Fig. 1 Relationship between waue, 'wavelet', chirp and 'chirplet', in 
rerms of time series and magnitude time-frequency (TF)  distributions 

We have extended the one dimensional afinity of the wavelet to 
two dimensions, by adding updown translation and shear in TF 
space. These extra affine transformations are achieved by multipli- 
cation of the wavelet by a chirp (modulation, which is multiplica- 
tion by a pure tone, is just a special case of 'chirping'). Hence we 
use the term 'chirplet'. The chirp in time performs a shear along the 
frequency axis. The nature of the Gabor function eliminates two of 
the six TF-afine degrees of freedom which a general chirplet has 

(i) wave time series 
(ii) wavelet time series 

(iii) TF for wave 
(iv) TF for wavelet 
(v) chirp time series 

(vi) chirplet time series 
(vii) TF for chirp 

(viii) TF for chirplet 

Prolate chirplet: We illustrate our T F  affine concept by a 
simple example. We use a function which is somewhat rec- 
tangular in TF space, the discrete prolate spheroidal sequence 
(DPSS). These functions are of special interest in the signal 
processing community (Landau, Pollack, Slepian [S, 61) and 
are commonly referred to as prolates or Slepians." When we 
apply our T F  afine transformations to the prolate, we obtain 
a specific class of chirplets which we refer to as prolate chir- 
plets.tt The chirplet has all six degrees of freedom when the 
prolate is chosen as the mother chirplet (shown in Fig. 2): 

(1) Translation in time (may be accomplished by Fourier 
transformation, followed by modulation, followed by inverse 
Fourier transformation) : 

(2) Translation in frequency (modulation) 

** We have applied the TF-afine operators to a number of different 
signals; here the Slepian is chosen simply because it  is the most illus- 
trative of the concept, not necessarily because i t  gives the best per- 
formance 
tt We have also successfully implemented a new variant of the 
Thomson method of spectral estimation using a family of these 
prolate chirplets as multiple data windows 

(3) !Z Dilation in time 

(4) Dilation in frequency 

( 5 )  0 Shear in time (chirping) 

(6) 0, Shear in frequency (Fourier transformation, followed 
by chirping, followed by inverse Fourier transformation). 

-- 
time t i m e  
( V I )  ( V I I )  

m 
Fig. 2 Illustrarion of a/line transformations in TF space 

Here we use a family of discrete prolate spheroidal sequences 
(DPSS), and arrive at our prolate chirplet family 
There are six degrees of freedom 
Note that time bandwidth product is free to vary, although it has a 
lower bound 

(I) original function 
(ii) translation in time 
(iii) translation in frequency 
(iv) dilation in time 
(v) dilation in frequency 
(vi) shear in time 
(vii) shear in frequency 

Warblets and the winking phenomenon: Tests on  actual radar 
data, pertaining to ocean surveillance, show that the radar 
return from small ice fragments rises and falls in frequency in 
a periodic manner 131. (From the perspective of a surfer, 
ocean waves rise and fall periodically, so it stands to reason 
that the Doppler tone (velocity) that is obtained from a target 
also rises and falls periodically in pitch.) 

T o  match this physical phenomenon we have selected a 
particular 'mother chirplet', to which we apply the six TF- 
alline operators. Because this particular choice of chirplet has 
a profound significance, we have given it a special name, the 
'warblet'. Warblets are chirplets where the mother chirplet is a 
single tone FM signal (like the sound produced by either a 
police siren or the bird known as a warbler). 

A particular manifold in warblet space, the modulation- 
index versus modulation-frequency plane, has been found to 
be very useful in analysing actual radar data, making use of 
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the winking phenomenon. A general theory has been built up 
around this particular planar slice. 

7th October 1991 

S. Mann’ and S. Haykin (McMaster University, Communications 
Research Laboratory, 1280 Main Street West, Hamilton, Ontario U 5  
I K I ,  Canada) 

* Now at Massachusetts Institute 01 Technology 
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PERFORMANCE COMPARISON OF 
SUBCARRIER MULTIPLEXED COHERENT 
SYSTEMS USING OPTICAL INTENSITY AND 
PHASE MODULATORS 

Q. J iang  a n d  M. Kavehrad 

Indexina term: Ovtical communications 

The performance of subcarrier multiplexed coherent systems 
is compared theoretically using optical intensity and phase 
modulators. The results show that a subcarrier multiplexed 
coherent system with a symmetrical optical intensity modula- 
tor can offer a receiver sensitivity improvement as high as 
9.1 dB over that with an optical phase modulator. 

Coherent systems offer improved receiver sensitivity and fre- 
quency selectivity over direct detection systems. Subcarrier 
multiplexed (SCM) coherent optical systems have been 
studied theoretically and experimentally [l-31. There have 
been reports on subcarrier multiplexed coherent systems using 
optical phase modulators [l]. The main factor limiting the 
system performance is the intermodulation distortion (IMD) 
due to nonlinearity of the modulation. Multioctave operation 
is often used to improve the bandwidth elliciency. However, in 
a coherent SCM system using an optical phase modulator, 
second order intermodulation distortion degrades the system 
performance seriously 111. We compare the performance of 
coherent SCM systems theoretically using optical intensity 
and phase modulators. The results show that a coherent SCM 
system with a symmetrical optical intensity modulator can 
offer a receiver sensitivity improvement as high as 9.1 dB over 
that with an optical phase modulator. 

Fig. 1 shows the structure of a symmetrical Mach-Zehnder 
intensity modulator, schematically. The optical signals passing 
through the two arms are phase-modulated by the electro- 
optic effect. The voltages applied on the two arms produce 
opposite optical phase shifts. By biasing the modulator at the 
zero-crossing point, the electrical field of the output optical 
signal can be written as 

E .  
2 eo(t) = 2 . (cos [2n/i + qm(t)]  cos [27tfi - qm(t)]} (1) 

where E; and f are the electrical field and the frequency of the 
input optical signal, respectively. cp,(t) is the phase modulation 
produced by the subcarrier signals, where 

N 

qm@) = 8, . sin C2nJ t + W)l (2) 
, = I  

pi, 4. and s i t )  are the optical phase modulation index, sub- 
carrier frequency and angle modulation of the ith subcarrier, 
respectively. 

The optical signal can be described using a Bessel function 
expansion [I]. This yields 

where J,( ) denotes the nth-order Bessel function of the first 
kind. 

We find that the even-order intermodulation products are 
cancelled whereas the signals and the odd-order inter- 
modulation products remain the same as that of a phase 
modulator. 

sl / , out 

Fig. 1 Schematic diagram of symmetrical Mach-Zehnder intensity 
modulator 

Based on the above analysis, we summarise our study in 
Tables 1 and 2. We assume a balanced receiver is used so that 
the direct detection terms are removed in the receiver. 

Table 1 RECEIVER SENSITIVITY 
COMPARISON 

Multioctave Single octave 

Intensity 

Phase 
modulator A A 

modulator B A 

B (dB)-A (dB): receiver sensitivity improvement 

(1) In a multi-octave operation, the intensity modulator results 
in a receiver sensitivity improvement over that of a phase 
modulator because of the cancellation of the second order 
intermodulation products. In a single-octave operation, the 
intensity modulator has the same performance as a phase 
modulator. 

(2) For coherent SCM systems with 20, 30 and 40 channels in 
2, 3 and 4-octave operation [l], the intensity modulator will 
result in a receiver sensitivity improvement of 7.5, 8.7 and 
9.1 dB, respectively, over that of a phase modulator. 

Table 2 RECEIVER SENSITIVITY 
IMPROVEMENT 

Number ofchannels 20 30 40 
Number of octaves 2 3 4 
Receiver sensitivity 

immovement (dB) 7.5 8.7 9.1 
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