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The Chirplet Transform: Physical Considerations 
Steve Mann and Simon Haykin, Fellow, ZEEE 

Abstruct- We consider a multidimensional parameter space 
formed by inner products of a parameterizable family of chirp 
functions with a signal under analysis. We propose the use 
of quadratic chirp functions (which we will call q-chirps for 
short), giving irise to a parameter space that includes both the 
time-frequency plane and the time-scale plane as 2-D subspaces. 
The parameter space contains a “time-frequency-scale volume” 
and thus encalmpasses both the short-time Fourier transform 
(as a slice along the time and frequency axes) and the wavelet 
transform (as (a slice along the time and scale axes). 

In addition to time, frequency, and scale, there are two other 
coordinate axes within this transform space: shear in time (ob- 
tained through convolution with a q-chirp) and shear in fre- 
quency (obtained through multiplication by a q-chirp). Signals in 
this multidimeinsional space can be obtained by a new transform, 
which we call the “q-chirplet transform” or simply the “chirplet 
transform.” 

The proposed chirplets are generalizations of wavelets related 
to each other by 2-D aMine coordinate transformations (transla- 
tions, dilations, rotations, and shears) in the time-frequency plane, 
as opposed to wavelets, which are related to each other by 1-D 
affine coordinarte transformations (translations and dilations) in 
the time domain only. 

I. INTRODUCTION 

NDERL‘fING a great deal of traditional signal process- U ing theory is the notion of a sinusoidal wave. With 
the advent of modern computing, and the fast Fourier trans- 
form, the use of and interest in frequency-domain signal 
processing has increased dramatically. More recently, how- 
ever, researchers are becoming aware of the limitations of 
frequency-donnain methods. Although the Fourier transform 
yields perfect reconstruction of a broad class of signals, it 
does not necessarily provide a meaningful interpretation when 
the signals lack global stationarity. For example, consider the 
time series fomed by a typical passage of music. An estimate 
of its power spectrum tells us which musical notes are present 
(how much energy there is around each of the frequencies) but 
fails to tell us when each of those notes was sounded. 

Much of the recent focus of signal processing is on the so- 
called timeTfrequency (TF) methods, which allow us to observe 
how a spectral estimate evolves over time. One of these 
TF methods--the short-time Fourier transform (STIT)-has 
been used extlensively for analyzing speech, music, and other 
nonstationary signals. 
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Suppose we want to perform a STFT analysis but are 
uncertain what the window size should be. We could perform 
the STFT of a signal s ( t )  using a window of relatively short 
duration and then stretch the window out a small amount and 
compute another STFT, and so on, gradually increasing the 
window size and computing another STFT for each value of 
window size. Stacking uncountably many of these STFT’s 
on top of one another results in a continuous volumetric 
representation of s that is a function of time, frequency, and 
the size of the window [see Fig. l(a)]. 

We will refer to this volumetric representation as the time- 
frequency-scale (TFS) transform.’ 

Another time-frequency representation (which might more 
appropriately be called a time-scale representation) is the well- 
known wavelet transform [2]-[5]. The wavelet transform can 
be expressed as an inner product of the signal under analysis 
with a family of translates and dilates of one basic primitive. 
This primitive is known as the mother wavelet. A member 
of the wavelet family is produced by a particular 1-D affine 
coordinate transformation acting on the time axis of the mother 
wavelet; this geometric transformation is parameterized by 
two numbers (corresponding to the amounts of translation 
and dilation). The continuous wavelet transform is formed 
by taking inner products of the signal with the uncountably 
many members of the two-parameter wavelet family. The 
continuous wavelet transform is, with an appropriate choice 
of window/mother-wavelet, simply the time-scale (TS) plane 
of the TFS volume (see Fig. l(a)). 

We begin to see that even if it is not practical from a 
computational or data-storage point of view, the TFS space 
is useful from a conceptual point of view. In particular, if 
we only desire the magnitude TFS volume, we can easily 
extract this information from the Wigner distribution by the 
appropriate coordinate transformations and uniform smoothing 
of the coordinate-transformed Wigner distributions. A contin- 
uous transition from thle magnitude TF plane (spectrogram) 
to the magnitude TS plane (scalogram) is possible through 
appropriate smoothing of the Wigner distribution [6]. 

Now, suppose we were to multiply the signal s ( t )  by a 
linear FM (chirp) signal exp [j27r(c/2) t’] and then compute 
its STFT. If we vary the chirp rate c continuously and repeat 
the process uncountably many times, stacking the resulting 
STFT’s one above the other, we obtain a different 3-D 

‘When using <x multidimensional parameter space, it is often impossible 

only one parameter, we cannot always reconstruct the signal. With two 
effective parameters, we can reconstruct the signal and bound the energy of 
the representation as well. With three or more parameters, the energy in the 
transform space will be infinite. To the extent that multidimensional parameter 
spaces are still useful, we will not let this infinite energy hinder our progress. 

to establish frame bounds [l] on the energy in the parameter space. With 

1053-587X/95$04.00 0 1995 IEEE 



2146 IEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 11, NOVEMBER 1995 

Frequency 

Frequency t 

B 
Chirprate 

Fig. 1. Volumetric family of short-time Fourier transforms: (a) Family of un- 
countably many STFT’s, where the window is allowed to dilate continuously, 
gives us a “time-frequency-scale” (TFS) transform. The bottom plane fc = 0 
is the time-scale plane that is a continuous wavelet transform if g E L2(R) 
is a suitably chosen mother wavelet. Here, we only show one octant of 
the volume. Note also that the plane 1/s = 0 is not defined for it would 
correspond to infinite scale; (b) sheared STFT’s with a variety of assumed 
chirprates. Shearing of the TF plane is performed through multiplication 
of the signal by a chirp, with Shirprate c. If we stack up uncountably 
many such TF planes, allowing c to vary continuously, the result is a 
“time-frequency-chirprate” (TFC) transform. 

volume (see Fig. 2(b)). This time, we have a function of time, 
frequency, and chirprate. 

Of course, there is no reason to limit ourselves to a choice 
between these two parameter spaces; to motivate what follows, 
it will prove helpful to keep in mind a continuous 4-D “time- 
frequency-scale-~hirprate”~ (TFSC) parameter space. 

A. Historical Notes 

In 1946, in his seminal paper on communication theory 
[7], Gabor (who later won the Nobel prize for his work 
on holography) provided a new interpretation of the I-D 
Gaussian-windowed STFT and examined the time-frequency 
plane in terms of a 2-D tiling. Although Gabor’s development 

’Traditionally, the term chirp-rate (with a hyphen) is used, but in this paper, 
we use the single word “chirprate,” to avoid confusion arising out of hyphens 
in compounded parameter lists. 

was not completely rigorous (and, in fact, his representation 
was later shown to be unstable [l]), his notion of a time- 
frequency tiling was a very significant contribution. Gabor 
referred to the elements of his tiling as Zogons. 

Beginning around 1956, Siebert began to formulate a radar 
detection philosophy with some particularly useful insights 
in terms of time-frequency [SI, [9]. Much of his insight was 
obtained through the use of Woodward’s uncertainty function 
[IO], whch is also known as the radar ambiguityfunction [ 111 
or the Fourier-Wigner transform [12]. Siebert also considered 
chvping functions for pulse compression radar and studied 
these in detail, observing that chirping in the time domain gives 
rise to a shearing in the time-frequency plane (or, equivalently, 
a shearing in the 2-D Fourier transform of the time-frequency 
plane). 

In 1985, Grossman and Paul [13] rigorously formulated 
some of these important ideas in terms of affine canonical 
coordinate transformations to a coherent space representation. 
They also considered two-parameter subgroups of these affine 
coordinate transformations. 

Papoulis, in his book [14], described the use of a linear 
frequency-modulated (chirped) signal as the basis of an or- 
dinary Fourier analyzer and presented the chirped signals as 
shearing operators in the time-frequency plane, foreshadowing 
the development of the chirplet transform. 
In 1987, Jones and Parks [15] formulated the problem of 

window selection in terms of time-frequency leakage. They 
made an important connection between the work of Szu 
and Blodgea [16], who showed that frequency shearing is 
accomplished through multiplication by a chirp, and the work 
of Jmssen [17], who proved that any area-preserving affine 
coojdinate transformation of the time-frequency plane yields 
a valid time-frequency plane of some other signal, although 
they were unaware of Siebert’s earlier unpublished work. In 
a simple and insightful example, Jones and Parks showed the 
time-frequency distribution of both a Hamming window and 
a c h q e d  Hamming window, one being a sheared version of 
the other. 

Berthon [ 181 proposed a generalization of the radar ambigu- 
ity fulaction based on the semidirect product of two important 
groups: 

* the special linear group SL(2, R) that embodies shear in 

0 the Heisenberg group that involves both time and fre- 

In 1989 and early 1990, we formulated the chirplet trans- 
form-a multidimensional parameter space whose coordinate 
axes correspond to the pure parameters of planar affine co- 
ordinate transformations in the time-frequency plane. (This 
formulation was motivated by a discovery made by the senior 
author and his research associates, namely, that the Doppler 
radar return from a small piece of ice floating in an ocean 
environment is chirp like [ 191 .) We also formulated a variety 
of new and useful transforms that were 2-D subspaces of this 
multidimensional parameter space. Furthermore, we suggested 
using the work of Landau [20]-[25], who introduced prolate 
spheroidal functions, and we noted their significance in the 

the time-frequency plane 

quency shifts. 
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context of the shearing phenomenon in the time-frequency 
plane as they form idealized parallelogram tilings of this plane. 

Later, we applied the chirplet transform and some of the 
new 2-D subspace transforms to problems in marine radar 
and obtained iresults that were better than previous methods; 
therefore, we published these findings [26]. Independently, 
at around the same time (ironically, only a few days later), 
Mihovilovic and Bracewell also presented a related idea [27] 
(ironically, using the same name, “chirplets”), though not in 
the same level of generality of the multidimensional parameter 
space. Later they also presented a practical application of 
chirplets [28]. 

A point that needs to be emphasized here is that there is 
more to the chirplet transform than just the shear phenomenon. 
In particular, time shear and frequency shear are examples 
of ufine coordinate transformations-mappings from the TF- 
plane to the TF-plane-whereas the chirplet transform is a 
mapping from a continuous function of one real variable to a 
continuous function of five (or six) real variables. 

In 1991, Torresani [29] examined some relations that were 
intermediate between the affine and the Weyl-Heisenberg 
groups. The work of Segman and Schempp [30] incorporates 
scale into the Heisenberg group, and the work of Wilson et al. 
[31], [32] examines the use of a TFS representation that they 
call the multiresolution Fourier transform. 

Baraniuk and Jones studied several “chirplet transform sub- 
spaces” and mlade precise some of the mathematical details of 
the 2-D chirplet transform subspaces [33]. They also provided 
an alternative derivation [33] of the chirplet transform based 
on the Wigner distribution. This derivation involved noting, 
as we did, that each point in the analysis space of the chirplet 
transform corresponds to a particular operator in the time 
domain. This time-domain operator acting on the analysis 
primitive (“mother chirplet”) also has associated with it a 2- 
D area-preserving affine coordinate transformation in the TF 
plane. Baraniuik and Jones also addressed discretization issues 
[331, WI. 

Recently, nesearchers have considered fractional Fourier 
domains and their relation to chirp and wavelet transforms 
P51. 

B. Related Wcvk 
Early on, cur interest in chirping analysis functions was 

motivated by iI different kind of chirping phenomenon: chirp- 
ing due to perspective. Our urban or indoor world contains 
a plethora of periodicity, repeating rows of bricks, tiles, 
windows, or the like abound, yet pictures of these structures 
fail to capture the true essence of this periodicity. When 
photographed at an oblique angle (where the film plane is 
not necessariky parallel to the planar surface), these surfaces 
give rise to an image whose spatial frequency changes as 
we move across the image plane. The distant bricks will 
appear increasingly smaller as we move toward the vanishing 
point which may be defined to be the point of infinite spatial 
frequency. Our first generalization of the wavelet transform 
was to take the “zooming-in” property of wavelets and extend 
it to punning and tilting to model the movements of a camera. 

Our interest i~n radar, however, drew us toward processes 
that are more accurately analyzed by linear-FM chirplets. We 
realized that listening to radar sounds from marine radar, 
automobile traffic radar, and the like, that in many cases, 
there was a strong “chirping,” and therefore, the usual Fourier 
Doppler methods seemed inappropriate in these cases. In 
particular, the warbling sound of small iceberg fragments 
suggested that we should consider alternatives to windowed 
harmonic oscillations and the like (e.g., alternatives to waves 
and wavelets). 

Of the many different kinds of chirping analysis primi- 
tives possible, we may distinguish two families of analy- 
sis primitives that are of particular interest in practice: the 
“projective chirplet” (pchirplet) and the “quadratic chirplet” 
(q-chirplet), the latter being the one described in this pa- 
per. These two forms have been presented in a combined 
fashion with the “time-frequency perspectives” [36], which 
is a more general chirplet that has eight parameters. The 
resulting eight-parameter signal representation includes the 
“projective chirplet transform” as one five-parameter subspace 
and the “quadratic chirplet transform” (e.g., the one presented 
in this paper) as another five-parameter subspace with the time, 
frequency, and dilation axes being common to both of these 
two subspaces. Computational issues have yet to be addressed, 
although special-purpose hardware has been proposed [37] 
with an emphasis on use of FFT-based hardware. 

We have also constructed other chirplet transforms, such as 
a three-parameter Doppler chirplet representation that models 
a source producing a sinusoidal wave while moving along a 
straight line (e.g., a train whistle). The three parameters are 
center frequency, maxirnum rate of change of frequency, and 
frequency swing. In addlition, a log-frequency chirplet has been 
formulated where the underlying chirps appear as straight lines 
in the time-scale plane. 

Generalizations of the STFT and wavelet transform that 
make use of chirping anidyzing functions have been previously 
suggested [26]-[28], [36], [38]-[41]. Comparisons between 
traditional TF methods and chirplets have also been made in 
the context of practical applications in both radar [26], [42] 
and geophysics [28]. 

C. Overview 

of the chirplet transform. It is organized as follows: 
This paper is devoted to physical (intuitive) considerations 

We first introduce chirping analysis functions that may be 
thought of as generalized wavelets (“chirplets”). 
We then generalize Gabor’s use of the Gaussian window 
for his tiling of the time-frequency plane. This generaliza- 
tion gives rise to the 4-D time-frequency-scale-chirprate 
(TFSC) parameter space. 
We next consider non-Gaussian analysis functions, giving 
rise to a 5-D parameter space. 
We next consider the use of multiple analyzing 
waveletsiwindows: first to generalize Thomson’s 
method of spectral estimation to the TF plane and then 
to further generalize this result to the chirplet transform. 
The multiple analyzing wavelets/windows (which we 
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call “multiple mother chirplets” when they are used 
in the latter context) collectively act to define a single 
“tile” in the TF plane, corresponding to each point in 
the chirplet transform parameter space. Such a tile has a 
true parallelogram-shaped TF distribution whose shape 
is governed by the six 2-D affine parameters. 

* We generalize autocorrelation and cross correlation by 
using the signal itself (or another signal) as a “mother 
chirplet.” In other words, we analyze the signal against 
chirped versions of itself (or against c h q e d  versions of 
another signal). 

0 Finally, we consider chirplet transform subspaces, leading 
to a variety of new transforms. 

11. THE CHIRPLET 

The STFT consists of a correlation of the signal with 
constant-size portions of a wave, whereas the wavelet trans- 
form consists of correlations with a constant-Q family of 
functions. The two transforms, however, are in some ways 
similar. Although the former is generally thought of as a TF 
method and the latter a TS method, both attempt to localize 
the signal in the TF plane. In a rather loose sense, both 
the modulated window of the STFT and the wavelet3 of the 
wavelet transform may be regarded as “portions of waves.” 
Chirplets, in a similar manner, may be regarded as “portions 
of chirps.” We generally use complex-valued chuplets to avoid 
the mirroring in the f = 0 axis that results from using only 
real-valued chirplets. 

Fig. 2 provides a comparison in terms of real and imaginary 
components as well as TF distributions, between a wave, 
wavelet, chirp, and chirplet. In Fig. 3, we provide the same 
comparison with a 3-0 particle-rendering, where the three 
coordinate axes are the function’s real value, imaginary value, 
and time. Discrete samplings of four chuplets are shown: the 
top two have chirprate set to zero, and the leftmost two have 
an arbitrarily large window. 

A. Gaussian Chirplet 

The chirplets in Figs. 2 and 3 were derived from a single 
Gaussian window by applying simple mathematical operations 
to that window. The window may be thought of as the 
primitive that generates a family of chqlets, much like the 
mother wavelet of wavelet theory. We will, therefore, refer to 
this primitive (whether Gaussian or otherwise4) as the “mother 
chirplet” and will denote it by the letter g. 

A Gaussian wave packet (which is also known to physicists 
as simply a wave packet) is a wave with a Gaussian envelope. 
Mathematically, a wave packet may be represented by 

where j = &i, t ,  E IR is the center of the energy 
concentration in time, f c  E R is the center frequency, 

3The term “wavelet” will appear in quotes when it is used in this less 
restrictive sense. In particular, a “wavelet” will be permitted to have a nonzero 
dc component. 

41n general, g ( t )  is a complex-valued function of a real variable and has 
finite energy g E L2 (R). 

g E R > 0 is the spread of the pulse, and q3 E IR is the 
phase shift of the wave, which we will not consider as one of 
the Parameters. The subscripts of g represent the degrees of 
freedom, which comprise the parameter list. 

We like the wave packet to have unit energy. Hence, we 
reformulate the definition of the Gaussian envelope (taking 
advantage of the fact that a Gaussian function raised to any 
exponent-in our case 112-is still a Gaussian function if 
multiplied by the appropriate normalization constant) 

. exp [ j 2 r f c ( t  - t c ) ]  

1 1 t - t ,  - 
- &7zexp [-i (d] 

. exp [ j2 . i r fc ( t  - tc)]  (2) 
where At = fig. 

Theoretically bandlimited signals have infinite duration, but 
it is customary in electrical engineering to use the 3-dB band- 
width, which is defined as the difference in frequencies, on 
either side of the peak, where the energy or power falls to half 
the peak value. This definition, however, is not theoretically 
motivated nor particularly useful in our context. Therefore, in 
the case of the wave packet, we simply define the duration to 
be equal to At in (2). By the reciprocal nature of At and A,, 
we are also implicitly specifying the bandwidth. 

In (23, we can identify the Gaussian part as an envelope, 
which is modulated by a harmonic oscillation. The family 
of Gaussian chnplets is given by replacing the harmonic 
oscillation (wave) with a linear FM chirp: 

gt,,.fc,log c a * ) , c ( t )  = 
1 

~ e - ( 1 / 2 ) ( t / A t ) z  e32.rr[c(t--t,)2+f,(t-t,)l (3) 
%FG 

where we have used a logarithmic scale for the duration so that 
the unit width (default) is represented by a parameter of zero. 
Whenever a parameter is missing from the parameter list, we 
will assume it to be zero. For example, if only three parameters 
are present, we assume zero chirprate; if only two are present, 
we also assume that the log-duration is zero (log(&) = 0). 
Summarizing, the Gaussian chirplet (3) has four parameters: 
time-center t,, frequency-center f,, log-duration log (A,), and 
chirprate e. 

B. Notation 

The family of chuplets is generated from the mother chirplet 
by applying simple parameterized mathematical operations to 
it. The parameters of these operations form an index into the 
chirplet family. 

The operations corresponding to the coordinate axes of the 
chirplet transform parameter space are presented in Table I. 
The operators will be explained as they are used. The general 
notion to keep in mind is that any combination of these oper- 
ators results in a 2-D affine coordinate transformation in the 
TF plane, which may be represented using the homogeneous 
coordinates often used in computer graphics [43]. 
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Fig. 2. Relationship between wave, “wavelet,” chirp, and chirplet in terms of 
TS and magnitude. TF distributions. The “wavelet” provides a tiling of the TF 
plane with tiles that are lined up with the time and frequency axes, whereas the 
chirplet permits us to construct a more general tiling of the TF plane because 
the tiles may rotate or shear. More generally, each of these four functions is 
actually a chirplet. For example, the wave is a special case of a chuplet where 
the chuprate is zero, and the window size is arbitrarily large. Note the use of 
a bipolar frequency axis since we often wish to distinguish between positive 
and negative frequency components. Figure reproduced from [ l ]  used with 
permission. 

The continuous STFT may be formulated as an inner 
product of the signal with the family of functions given in (2): 

(4) 

where A, is a1 suitably-chosen (fixed) window size, and s ( t )  
is the original signal. We use the Dirac inner product notation, 
which is defined by 

03 

(91s) = s_, g*( t )  44 d t  ( 5 )  

where g* denotes the complex conjugate of g. We use the 
vertical bar between the arguments and absorb the conjugation 
into the first element so that we can write (91 by itself as an 
operator that acts on whatever follows-in this case the signal 
1s). 

WAVE WAVELET 

CHIRP CHIRPLET 

Fig. 3. Wave, “wavelet,” chirp, and chirplet revisited. The 2 axis corre- 
sponds to the real value of the function and the y axis to the imaginary value. 
Although the functions are continuous, a coarse sampling is used to enhance 
the 3-D appearance. Each sample is rendered as a particle in (z, y, t )  space. 
WAVE-The wave appears as a 3-D helix. The angle of rotation between each 
sample and the next is constant, hence, the frequency, which is the rate of 
change of phase with respect to time, is constant. WAVELET-The “wavelet” 
is a windowed wave, where the reduction in amplitude is observed as a decay 
toward the t axis. The angle of rotation between each sample and the next 
is still constant. CHIRP--The chirp is characterized by a linearly increasing 
angle of rotation between one sample and the next. Note the increased particle 
density at the origin. CHIRF’LET-The chirplet is characterized by the same 
linearly increasing angle of rotation but first with a growing and then with 
a decaying amplitude. 

TABLE I 
OPERATORS CORRESPONDING TO THE COORDINATE AXES 

OF THE CHIRPLET TRANSFORM PARAMETER SPACE 

Suppose we take the Gaussian window, which is centered 
at t = 0, withi unit pulse duration as given by 

(6) 

We denote a time shift to the position t ,  with an operator 

that has a mulltiplicative: law of composition: a e (Table I). 
A frequency shift to the position f c  consists of multiplying 

the window by e x p ( j 2 n f c t ) ,  which we will denote / f c .  
The single-operator notation (Table I, second column) consists 
of a pictorial icon depicting the effect each operator has on 
the TF plane, even when the operator is acting in the time 
domain. For example, the symbol with the two up arrows 
indicates a uniform upward shift along the frequency axis of 

g ( t )  = 1 exp (- f t 2 )  . 
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the time frequency plane for positive values of the parameter. 
These pictorial icons are consistent with our observation that 
each of these operators acts in the time domain to perform 
an area-preserving afJine5 coordinate transformation in the 
time-frequency plane. 

Using the new notation, we can rewrite (4) as 

(7) 

where we have also eliminated the time coordinate, recog- 
nizing that for any operator in the time domain, there is an 
equivalent operator in the frequency domain or in the TF plane 
or in whatever other reasonable coordinate space in which one 
might wish to work. The multiplicative law of composition of 
the operators is applied in the order in which they appear 

right to left (e.g., mfc is applied first, and then, 

is applied to that result). Note that these two operators 
do not commute. Adopting the convention of applying the 
frequency-shift first and then the time-shift results in the term 
t - t ,  appearing in the second exponent of (2). Applying the 
operators in the reverse order would result in a different phase 
shift. In order to form a true group, we need a third parameter 
q5 to indicate the degree to which the two operators do not 
commute. Such a group structure is known as the Heisenberg 
group [ 121. If we are only interested in the magnitude of the 
TF plane (e.g., the spectrogram), then we can simply consider 
the 2-D (two-parameter) translational group and describe the 
operations in terms of this simpler group. Both (4) and (7) 
are equivalent, providing us with some measure of the signal 
energy around coordinates (tc, f , ) ,  but (7) emphasizes the fact 
that the STFT is a correlation between members of a two- 
parameter family of time- and frequency-shifted versions of 
the same primitive g. 

Using the simplified law of composition, we may compose 
a time shift by t ,  with a frequency shift by f c  as follows: 

0, w, =Ct,,o,o,o,oCo,fc,o,o,o 

where omissions from the parameter list of C indicate values 
of zero. 

Equation (7) may be rewritten using the “composite nota- 
tion” (Table I, third column) 

stc,.fc = (ctc>fcg(4 Is(t)) (9) 

C. Time-Frequency-Scale Volume 
The STFT is a mapping from a 1-D function (the domain, 

which is a function of time) to a 2-D function (the range, 
which is a function of time and frequency). Now, suppose 
that rather than holding At constant (4), we also allow it to be 

Segal [44] and others sometimes refer to these coordinate transformations 
as symplectomolphisms. It is well known [12], [45] that the actual geometry 
of phase space is symplectic geometry and that it is a coincidence that SPz 
corresponds to area-preserving affine geometry. Therefore, we must keep in 
mind that if we desire to extend our thinking to the analysis of signals of 
dimension n > 1, then we must consider the symplectic geometry of SPzn. 

a parameter. The new mapping we so obtain is a mapping from 
the 1-D domain (time) to a 3-D range (time, frequency, and 
log-scale) that we previously referred to as the TFS parameter 
space6 (see Fig. l(a)). 

D. Gaussian Chiqdet Transform (GCT) 
We can further extend the multidimensional parameter 

space. Suppose we also allow the chirprate, c, in (3) to be 
one of the coordinates of the parameter space. The resulting 
transform is given by: 

Stc,fc,log (At),, (ct~,f,,A,,cg(t)ls(t)) (10) 
We refer to (10) as the “Gaussian chirplet transform” (GCT). 

One characteristic of the 1-D Gaussian window is that 
its TF energy distribution is a bivariate Gaussian function. 
Therefore, its TF energy contours are elliptical, so shearing the 
TF distribution along the time axis provides no new degrees 
of freedom that can be obtained by combinations of shearing 
along the frequency axis together with dilation. If we consider 
other windows, however, we do not, in general, have this 
degenerate property. 

E. Continuous Chirplet Transfom (CCT) 
We have been using the frequency shear operator, which 

we obtained through multiplication by a linear FM chirp. In a 
dual manner, we may introduce the time shear operator (Table 
I, last row), which we obtain by convolving g ( t )  with a linear 

Fourier transformation of a chirp, with chirprate d produces 
another chirp, which has chirprate -l/d. Thus, convolution 
of a signal s ( t )  with a chirp having chirprate d is equivalent 
to multiplying S(f) with a chirp of rate - l / d  and taking the 
inverse Fourier transform of the product. In short, we have 
rotated the lT plane 90°, sheared it ‘left right, and rotated it 
back. This three-step process has the net effect of shearing the 
TF plane top bottom. 

The full continuous chu-plet transform (CCT) is defined in 
the same manner as (10) 

FM chvrp. 

Stc,.fc,log(At),c,d = ( c t ~ , f , , a , , c , d g ( t ) I s ( t ) )  (I1) 
except that we have one new operator (time-shear) that is 
composed with the other four operators. 

Again, the law of composition [46] of any two chirplet 
operators (multiplicatively) follows by virtue of the fact that 
both represent affine coordinate transformations of the TF 
plane. 

The intuition behind (1 1) is that entries in the first column 
of Table I simply represent the coordinate axes of the multidi- 
mensional parameter space, and their subscripts represent the 
distances along these axes. 

Segal exploited various coordinate transformations in the TF 
plane in the development of his theory of dynamical systems 
of infinitely many degrees of freedom 1471. His harmonic 
map or oscillator map, as he called it (the Segal Shale Weil 
representation [48]), is indeed related to the chirplet transform. 

6Note that if we were interested in exploitmg the phase of this represen- 
tation, we would need to add a fourth parameter to account for the extent to 
which the operators do not commute 
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7 
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Fig. 4. Three-dimensional parameter space based on the use of multiple 
windows. This pyramidal representation may either be computed by applying 
the appropriate set of DPSS’s to compute the “true-rectangular TF tiling” at 
each level or, altematively, by computing a pyramid from the TF (Wigner) 
distribution of the signal. In the latter case, the TF pyramid is computed in 
much the same way that Gaussian pyramid of an image is computed except 
using a rectangular filter rather than a Gaussian filter. 

F. Multiple Mother Chirplets: The Prolate Chirplets 

1 )  Thomson’s Method of Spectral Estimation: Thomson’ s 
multiple window method of spectral estimation [49] provides 
a very good estimate of the power spectrum by measuring the 
energy contained within a collection of rectangular7 shaped 
frequency intervals. The spectral estimate is formulated by 
averaging together, with appropriately chosen weighting 
(the eigenvalues), multiple power spectral estimates, each 
computed with a different window. 

The windows that comprise a family of discrete prolate 
spheroidal sequences (DPSS) have been studied extensively 
(Landau et a1 [20]-[24] and are commonly referred to as 
prolates or Slepians. 

The remarkable property of this family of windows is 
that their energy contributions add up in a very special way 
that collectively defines an ideal (ideal in the sense of the 
total in-bin versus out-of-bin energy concentration) rectangular 
frequency bin. Furthermore, for a time series of a given length, 
the power spectrum may be estimated at various resolutions 
(e.g., we can clhoose the frequency bin size). Although it might 
at first seem uinclear why one would want anything other than 
the highest resolution, the Thomson method allows us to trade 
resolution for improved statistical properties (reduced variance 
of the spectral estimate). Often, much of the fine structure 
of a spectral estimate is due to noise. It should be stressed 
that while other methods of spectral estimation (such as the 
Welch [50] method) exist, the Thomson method is particularly 
noteworthy for its precisely defined rectangular frequency bins. 

Generally, the Thomson method is thought of as a multiple 
window method, but another way of thinking of the Thomson 
method is by the way that the energy in each frequency bin 
is calculated. ‘To determine the quantity of energy inside the 
bin centered a t  f c ,  we frequency shift each of the windows 
to fc and sum the energy contributions from each of the 

7The term “rectangular” is used here in the context of “rectangular 
window,” meaning a 1-D function that is unity in a certain frequency interval 
and zero outside that interval, which is not to be confused with our later use 
of “rectangular,” which will be more consistent with its everyday usage to 
specify a 2-D shape. 

frequency-shifted windows: 

W C )  = l ( ~ o , f ~ , o , o , o S ~ l ~ ) 1 2 .  (12) 
i 

Writing the Thomson method in this way, we can generalize 
it further by replacing the one-parameter operator, Co,fC ,O,O,O 
with multiparameter operators. 

2) True Rectangular li’ling of the TF Plane: Although many 
researchers depict certain tilings of the TF plane (such as given 
by the STFT) schematically, using rectangular grids [7], and 
even refer to them as rectangular tilings, it is important to note 
that the actual shape of the individual tiles is better described 
as a tesselation of overlapping “blobs,” perhaps Gaussian, as 
was the case with the Gaussian-windowed STFT. 

However, tlhe same family of discrete prolate spheroidal 
sequences (DPSS) used in the Thomson method synthesizes 
a Concentration of energy in the TF plane where the energy is 
uniformly distributed throughout one small rectangular region 
and minimized elsewhere.8 

Observing this fact ((others have also observed this fact 
[48]), we now extend the Thomson method to operate in the 
TF plane. In practice, ’we calculate a discrete version from 
the discrete-time signal simply by partitioning the signal into 
short segments and applying the Thomson method to each 
segment. This amounts to a sliding-window spectral estimate, 
where the entire family of windows slides together. As in 
(12), however, we may write the proposed time-frequency 
distribution pointwise. That is, to calculate the energy within a 
rectangle centered at (tc, f c ) ,  we sum over the set of windows 
that have all been moved to the point (tc, f c ) :  

3) Pyramidal (Multiresolution) True-Rectangular TF Tiling: 
The area occupied by a particular family of DPSS is simply 
the time-bandwidth product and is denoted by the letters N W 
(the notation used by Thomson and others). The quantity N 
denotes the number of samples (duration) of a window, and 
W denotes the bandwidth collectively defined by a plurality of 
such windows of equal length. We can compute the TF plane 
of a particular signal at any desired value of N W  by using the 
discrete prolate sheroidal sequences (subject to the constraints 
that N W  can only be atdjusted in integer increments and that 
it also has a lower bound dictated by the uncertainty relation 
[51]). If we compute the TF plane at each possible value of 
N W  and stack these one above the other (Fig. 4), we obtain 
a three-parameter space, where the axes are time, frequency, 
and resolution (l/NW]i. 

Hierarchical or pyrailnidal [52] representations have been 
previously formulated, in the context of image processing, us- 
ing multiple scales in the physical domain (e.g., spatial scale). 
The proposed multiresolution TF representation, however, is 
new. In particular, here, the scale axis is NW-the area of 
the rectangular tiles at each level of the pyramid. Here, the 
scale is in the time-frequency plane and not the physical (time 
or space) domain. 

81n actual fact, there is a small amount of frequency smearing, but zero 
time smearing, as the energy is entirely contained in the time interval under 
consideration. 
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At this point, a reasonable question to ask might be the 
following: Why vary the area; do we not always desire 
maximum resolution or maximum concentration in the TF 
plane? The same answer we gave earlier, regarding smoothed 
spectral estimates, applies here. 

Smoothing is well known in time-frequency analysis, par- 
ticularly with the Wigner distribution, where we wish to 
reduce or eliminate cross-terms. Many smoothing kernels have 
been proposed [53], [54]. Each of these smoothing kernels 
has a particular shape, and many of these are optimum in 
one sense or another. The use of the DPSS’s, however, has 
been shown to be equivalent to a rectangular smoothing of 
the Wigner distribution [48] and therefore deserves special 
attention, particularly when we wish to describe a tiling of the 
TF plane in a very simple way. 

We may use the result of Shenoy and Parks [48] to gen- 
eralize the pyramidal true-rectangular TF tiling further by 
smoothing the TF distribution with a continuously variable 
rectangle size. When uncountably many of these rectangularly 
smoothed TF planes are stacked one above the other, a con- 
tinuous volumetric parameter space results, having parameters 
time, frequency, and resolution. 

4) Parallelogram-Shaped Tilings of the TF Plane: The 
method of multiple windows may be extended further to 
the chirplet framework. 

This further extension makes use of the same families of 
multiple windows that are used in the Thomson method and 
that we first extended to the true rectangular tiling of the TF 
plane, but instead, they will now be used within the context 
of the operators of Table I. In the same way that the Thomson 
method consists of computing power spectra with a plurality 
of windows, and averaging the power spectra together, we 
compute the power CCT’s with a plurality of windows and 
average the results together. To compute an appropriately 
smoothed version of the chirplet transform, we compute a 
CCT (11) using each one of the multiple windows as the 
mother chirplet. We then average the squared-magnitudes of 
the resulting CCT’s together, weighting by the eigenvalues, 
just as with the Thomson method. This gives us the CCT at 
a particular value of N W .  

Alternatively, we may consider that a given point in the 5-D 
CCT parameter space, say, [tc, fc, log (A,), e, d], is given by 
applying the operator Ct,,fc,log ( ~ , ) , ~ , d  to the set of multiple 
windows and then computing the sum of absolute squared 
energy: 

We now refer to the multiple windows as “multiple mother 
chirplets” as they have collectively taken the role of the 
single mother chirplet. They act collectively to produce an 
idealized parallelogram-shaped smoothing of the TF (Wigner) 
distribution (Fig. 5) ,  where the area of the parallelogram is 
N W .  

For example, if we apply a frequency shear with param- 
eter c = 0.85 to each of the mother chuplets, the new 
set of functions will collectively occupy the parallelogram- 

Original function 
:]-I 

Translation in Time 
51-1 

Translation in Frequency 
2 

Shear in Time ?(-I 

$ 
Time loo sec‘ 

._.  

Dilation in Frequency : 
: 

Shear in Frequency 
’i’]-[ 

Fig. 5. Illustratmg the six affine transformations of the TF plane using 
mnlhple “mother chuplets ” In h s  example, the mother chqlets consist of 
a set of 24 kscrete prolate spheroidal sequences (DPSS’s) that collectively 
d e k e  a rectangular energy concentrahon in the TF plane with an area 
N W  = 12. Members of ths  chuplet farmly each compnse 2NW fuuchons 
that collechvely define some parallelogram-shaped region of the TF plane. 
When considenng the hle size as an additional parameter, there are six 
dunensions m the chuplet transform parameter space. Figure reproduced from 
[Z] used with pemssion. 

shaped region of the TF plane indicated in the lower right 
side of Fig. 5. This energy concentration represents a single 
point located at coordinates (0, 0, 0, 0.85, 0) in the averaged 
squared-magnitude CCT. 

5) The Pyramidal (Multiresolution) CCT: Suppose we 
compute the above CCT (see Section 11-F-4) at a few different 
tile sizes and combine these CCT’s into a single six-parameter 
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representation. The value of tile size N W  may be thought of 
as a sixth coordinate axis in the chirplet transform parameter 
space-TF area. Including this sixth coordinate axis provides 
us with a hier(archica1 (multiresolution) CCT. 

To compute the proposed hierarchical CCT, we repeat the 
computation of the CCT (14) for each of the desired tile 
sizes and place them in a 6-D space, equally spaced along 
the sixth coordinate axis. Part of the computation involves 
resynthesizing a new set of multiple mother chirplets for each 
value of N W .  

Various 243 slices through the multiresolution CCT may 
correspond to useful tilings of the TF plane with true par- 
allelograms (Clue to the extent that the DPSS define a truly 
rectangular region in the TF plane). For example, the time- 
scale slice of the multiresolution CCT taken at a particular 
resolution is a wavelet transform based on multiple mother 
wavelets. 

Again, we may use the result of Shenoy and Parks [48] 
to generalize the multiresolution CCT by smoothing the TF 
distribution wiith a continuously variable parallelogram size. 
When uncountably many of these parallelogram-smoothed TF 
planes are “stacked,” a continuous 6-D parameter space results, 
having parameters time, frequency, scale, chirp, dispersion, 
and resolution. 

Others have: done work to further generalize energy con- 
centration to arbitrarily shaped regions of the TF plane [55] 
rather than just parallelograms. It would therefore be possible 
to use these results to define more general parameterizable 
transforms based on families of multiple analysis primitives 
acting collectively in the TF plane. 

connection gives us a link between the three-parameter “time- 
shift-frequency-shift-scale-shift” subspace of (15) and the 
time-frequency-scale subspace of the chirplet transform. Ex- 
tending this relation to the entire five-parameter CCT would 
give us the autochirplet transform. This extension is one of 
our current research areas in the continued development of 
the chirplet theory. 

In. CHIRPLET TRANSFORM SUBSPACES 

In practice, from a computational, data storage, and display 
point of view, the chirplet transform is unwieldy. Therefore, 
we consider subspaces of the entire parameter space. Planes 
are particularly attractive choices in this regard both because 
of the ease wiith which they may be printed or displayed on 
a computer screen and the fact that they lend themselves to 
finite-energy parameter spaces. 

Well-known examples are the TF and TS planes discussed 
previously. Other subspaces, however, correspond to entirely 
new transforms. For example, consider the chirprate-frequency 
(CF) plane, which is computed with a Gaussian window 
(Gaussian so that chirprake and dispersionrate do not need to be 
dealt with separately). It turns out to be useful in two cases: 
1) when we have only a short segment of data we wish to 
analyze (and therefore do not wish to partition it into even 
smaller time segments by the STFT), or 2) when we have a 
longer time series but arle not interested in the time axis. In the 
latter case, the CF plane lets us average out time and observe 
long-term slowly varying frequency trends. 

A. The Frequency-Frequency (FF) Plane 
We begin by discussing the CF plane and then present an 

argument for reparameterizing this plane in terms of two fre- 
quency indices, leading )to what we will be calling “frequency- 

G. Autochirplet and Cross-Chirplet Transforms 

itself frequency” (FF) analysis. 
If, in (1 l), .we choose the mother chirplet to be the signal 

(15) 
then we have ;a generalization of the autocorrelation function, 

Consider a 2-D slice through the 5-D CCT parameter space 
that we defined in (11): Stc,fc,log(At),c,d = (Ctc,fc,log(At),c,d s(t)ls(t)) 

where instead of only analyzing time lags, we analyze self S C , f C  = (~o,.fc,o,c,o g(t)ls(t)) (16) 
correlation with time shift, frequency shift, and chirprate. We 
call this generalization of autocorrelation the “autochirplet 
ambiguity function.” If, for example, the signal contains time- 
shifted versions of itself, modulated versions of itself, dilated 
versions of itself, time-dependent frequency-shifted versions of 
itself, or frequency-dependent time-shifted versions of itself, 
then this structure will become evident when examining the 
“autochirplet ambiguity function.” The “autochirplet ambigu- 
ity function” is not new, but, rather, was proposed by Berthon 
[ 181 as a generalization of the radar ambiguity function. Note 
that the radar ambiguity function [ l l ] ,  [56] is a special case 
of (15). 

It is well known that the power spectrum is the Fourier 
transform of the autocorrelation function, and that the Wigner 
distribution is the 2-D (rotated) Fourier transform of the radar 
ambiguity function. Recent work has also shown that there 
is a connection between the wideband ambiguity function 

where s ( t )  is an arbitrary time series, and the two dimensions 
of the transform space are the slope of the frequency rise 
c and the center frequency f c .  This transform is known 
[26] as the “bowtie (w) subspace” since the CF plane of 
a chirp is a sharp peak surrounded by faint bowtie-shaped 
contours (Fig. 6). Computing the CF plane of a signal s ( t )  
is equivalent to correlating the signal with a family of chirps 
that are parameterized by chirprate c and center frequency 
f c .  Calculating the CF plane from a signal that contains pure 
tones results in peaks on the slope = 0 axis. Downchirps in 
the signal result in peaks to the left of this line, and upchirps 
result in peaks to the right. 

For a discrete function,’ we would have periodicity in 
the CF plane, and the Nyquist boundary is diamond (0) 
shaped. The Nyquist limit dictates that the chirps with the 
highest (lowest) c values begin with a fractional frequency 
of -1/2 (+1/2) and enid with a frequency of +1/2 (-1/2). 

and an appropriately coordinate-transformed (to a logarith- 

where the connection is based on the Mellin transform. This 

We do not attempt to address issues of discretization in this paper except 
to the extent to which they have influenced the development of the continuous frequency axis) version Of the Wigner [5713 
chirplet transform. 
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SLOPE ("CHIRPINESS") 

Fig. 6. Chirprate-frequency (CF) plane calculated for a signal that is itself 
a chirp. The bowtie-shaped spread around the peak is due to the finite length 
of the analysis interval. Figure reproduced from 111; used with permission. 

MESH PLOT OF CONTOUR AT LEFT 

0 
FREQUENCY-Begin MESH PLOT 

Fig. 7. Frequency-frequency (E) plane of chuplet transform computed from 
a pure tone. Here, we parameterize the chqlets by a change of coordinates 
(rotation of the plane by Go), using f b e g  and fend rather than c and fc. 
Figure reproduced from [l]; used with permission. 

These chirps will both lie on the f c  = 0 axis of the CF 
plane. Consider a chirp that begins with a frequency 114 
and ends with a frequency of 314. It has the same chxprate 
c = 3/4 - 1/4 = 1/2,  but it will violate the Nyquist limit 
because part of the chirp exceeds the fractional frequency of 
1/2 and will therefore give rise to aliasing. 

Ideally, we would like this transform to have nice rectan- 
gular boundaries for convenient viewing on a video display; 
therefore, we overcome the Nyquist problem by tilting the 
parameter space 45". The new chirplets are then given by 

' 0 ,  ( . f e n d + f b e 9 ) / 2 , 0 ,  ( . f e n d - . f b e g ) / 2 r  0 g( t )  
- - g(t) eJ2x  [ ( f . n d - . f b . , / 2 ) t + ( . f ~ ~ d + . f b ~ ~ / z ) ] ~  (17) 

where g denotes the mother chirplet. The change of coordi- 
nates from the CF plane to the FF plane is given by fbeg = 
f c  - c and fend = f c  + c. When the analysis interval (window) 
is of finite duration, f b e g  may be taken to be the instantaneous 
frequency of the chirp at the beginning of the analysis interval 
(time window) and f e n d  the instantaneous frequency at the end 
of this interval. Since the new parameterization involves two 
frequency coordinates, we will refer to the resulting parameter 
space as the FF plane. Fig. 7 shows the FF plane computed 
from a harmonic oscillation. 

The value of the function defined on the FF plane evalu- 
ated at the origin gives a measure of how strong the c h q  
component from 0 to 0 (the dc component) is. The value 
at coordinates (0,1/2), for example, gives the strength of the 
component of a chirp going from a frequency of 0-112. Values 
of the FF plane in the upper left half (above and to the left of 
the diagonal f b e g  = f e n d )  correspond to upchups; those to the 
lower right correspond to downchirps. The values of the FF 
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plane along the diagonal line f b e g  = f e n d  define the Fourier 
$ransform of the original time-domain signal; the windowed 
version of the signal may be entirely reconstructed from only 
the diagonal of the complex-valued FF plane. 

B. A Simple Example with a Single Chirp Component 

In this first example, we allow an object to fall onto a 
small radar unit." The resulting TF distribution is shown as a 
contour plot in Fig. 8(a). We extract the portion of the recorded 
data that contains the object when it is in free fall (from the 
time after it was released to just before the time it hit the radar 
horn). From this portion of the time series (the corresponding 
TF distribution appears in Fig. 8(b)), we compute the FF plane 
through the CCT, which is simply a correlation between the 
signal and a family of chirplets parameterized in terms of 
beginning and ending frequencies. Its density plot appears as 
an image in Fig. 9. The response has a very high peak, as 
evidenced from Fig. 10. 

C. Relatationship Between Autochirplet FF 
Plane and Rudon Transform 

Conceptually, each point in the FF plane corresponds to a 
chnp component in the original signal, which also corresponds 
to a linear portion of the TF plane. The Radon transform 
(which is also known as the Hough transform) is formulated as 
a family of line integrals through a 2-D function. It is known 
for its ability to extract straight lines from images. For a good 
survey paper on the Radon transform, see Illingworth and 
Kittler [%I. This property allows us to use it as an alternate 
means of computing the FF plane of the chirplet transform by 
using the TF plane as our input image. 

The Radon transform provides us with a simple means of 
computing the FF plane of the autochirplet transform by using 
the Wigner distribution and arriving at a transform space that 
tells us basically the same information as the chirplet FF plane, 
except that we benefit from the greater resolution of the Wigner 
distribution. It is well known that the cross-components of the 
Wigner distribution are of an oscillatory nature, whereas the 
autocomponents give a net positive contribution. Therefore, 
since the Radon transform is integrating along lines, the cross- 
temzs of the Wigner distribution are cancelled out along each 
line so that the points in the Radon transform of the Wigner 
distribution only "see" the autocomponents of the Wigner 
distribution p ig .  1 l(a)). 

The Radon transform is usually computed from the normal 
equation of a line 

zcos ( e )  + ysin ( e )  = p (18) 

as an integral along each of these lines in the original space. 
The parameter space is sampled uniformly in the ( e ,  p)  co- 
ordinates. It is easier to compare the Radon transform of the 
Wigner distribution with the chirplet CF plane (Fig. 10) if by 

'OFor this experiment, we positioned the radar hom facing upward, held a 
volleyball two meters above the hom, and released the ball after the recording 
began. We recorded only the in-phase component and ignored the quadrature 
component of the radar. The sampling rate was 8 kHz. 



MA" AND HAYK;IN: CHIRPLET TRANSFORM: PHYSICAL CONSIDERATIONS 

Time Frequency distribution experiment with falling object 
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Timelsecond 
(b) 

Fig. 8. 
clipping in radar: (a) Note the spurious effects as the ball bounces around after it bas fallen; (b) detail of portion of data for which object is in free fall. 

Illustrative TF example: Actual data from a uniformly accelerating object (falling ball). 'Ilird harmonics are visible due to nonlinearities and slight 

first, without loss of generality, we normalize f b e s  and fend 

to be on the interval from -1/2-1/2 and the TF distribution 
to have time and frequency coordinates on the same interval 

and 
1 

f d i f f  
tan(0) = - 

from -1/2-1/2. Then, we make the substitution 
where f d i f  f =' f e n d  - f b e g  and f a v g  = ( f e n d  + f b e g ) / 2 .  

sin(i3) = - P 
f a v g  

(19) A simpler (perhaps equally well known) form of the Radon 
transform parameterizes the lines in terms of their slopes 
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- I Q  Beginning Frequency +112 

Fig. 9. FF plane of the chirplet transform taken for radar data from uniformly 
accelerating object. Note the location of the peak, indicating a near-zero initial 
velocity, and a much higher final velocity. 

Fig. 10. Shaded surface of FF chn-plet plane for radar rerum of falling object. 
The localization in the FF chirplet plane for uniformly accelerating objects is 
even more visible here. In addition, note the absence of negative frequency 
components (lower quadrant). 

and intercepts. This parameterization has the advantage that 
it maps lines to points and points to lines, whereas it has 
the disadvantage that there is a singularity when lines of 
infinite slope (vertical lines) are encountered. Because of the 
Nyquist limit, however, we do not have this problem when the 
input to the Radon transform is a time-frequency distribution. 
Thus, we may be tempted to use the slope-intercept form of 
the Radon transform, except that we would prefer to have 
a parameterization that matches the FF plane rather than 
the CF plane for reasons previously discussed. The “Nyquist 
boundaries” to which we referred earlier are most evident if 
we simply consider the discrete Radon transform of a matrix 
of identically nonzero values (Fig. 12), where we can observe 
the same diamond shape that initially prompted us to use f b e g  

and f e n d  rather than f d z f f  and favs. 
We may overcome the problems associated with boundaries 

by defining a new version of the Radon transform, where we 
use the following pair of parameters: 

-1n +U2 

(b) 

Fig 11 (a) Radon transform of the TF (Wigner) distribution of the radar 
retum from a umformly accelerating (falling) object Since the Doppler retum 
of the continuous wave radar is a linear FM chirp, the TF dlstnbution had 
a single linear component A sharp localization in Radon space resulted 
(except for the smaller peak due to radar nonlineanhes, mainly thud harmonic 
&stomon), (b) FF plane of antachuplet transform A new parametenzation 
of the Radon transfarm allows its parameters to take on a new physical 
significance when the input “image” is the TF plane The abscissa has the 
meamg of begznning frequency, and the ordinate represents the kequency 
Notice the diagonal slanted bowtie shape and the simlanty to the bowtx 
shape in the FF plane of Fig 10 

* Beginning intercept f b e g :  the left-most ordinate on the 

* ending intercept f e n d :  the right-most ordinate on the line 
line (the ordinate for an abscissa of -1/2) 

(the ordinate for an abscissa of +)1/2. 
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Fig. 12. The “Nyquist problem” revisited: Radon transform computed from 
an identically nonzero image. The commonly used slope-intercept parameter- 
ization of the Radon transform results in the +shaped region similar to our 
“Nyquist boundary” in the CF plane. 

In Fig. 1 l(b), we show the autochirplet FF plane calculated 
from the falling-object data, using the new parameterization 
of the Radon transform. 

D. Nondilational Chirplet Transform 

We do not address discretization issues in this paper. How- 
ever, it is worth noting that in practice, we generally wish to 
compute the chirplet transform of a discrete-time signal, and it 
is sometimes the case that the mother chirplet is also discrete 
time and has no closed-form mathematical description. Thus, 
dilation would require resampling, and contraction would 
require antialiasing. In this case, the largest subspace we might 
obtain would be the subspace that omits both dilation and tiling 
size, leaving ius with the 4-D parameter space: 

E. Warbling Chirplet: Analysis of Signals 
of Oscillating Frequency 

Suppose we choose a windowed sinusoidal FM signal 
for our mother chirplet. Such a signal has a frequency that 
periodically rises and falls (much like the vibrato of musical 
instruments or the wail of a police siren). 

Within time-frequency space, conventional Doppler radar 
spectrograms treat the motion of objects as though their veloc- 
ities (Doppler frequencies) were piecewise constant (constant 
over each of the short time intervals), whereas the chirplet 
transform attained a certain advantage by generalizing to a 
piecewise constant acceleration model. 

Originally, we had further extended the linear FM 
chirplet bases to piecewise quadratic and piecewise cubic 
€W-piecewi,se polynomial approximations to the time- 

frequency evolution of Doppler returns. However, looking 
more closely at the underlying physics of floating objects, 
which was ow main motivation that led to our discovery of 
the CCT, we: observed a somewhat sinusoidal evolution of 
the Doppler signals. 

If you have ever watched a cork bobbing up and down at 
the seaside, you would notice that it moves around in a circle 
with a distinct periodicity. It moves up and down, but it also 
moves horizontally. Looking out at a target with a radar, for 
example, we see the horizontal component of motion (which 
is essentially a scaled version of the Hilbert transform of the 
vertical movement). This sinusoidal” horizontal movement 
results in a sinusoidally varying frequency in the Doppler 
return. 

We wish to end up with the instantaneous frequency of the 
basis function being given by 

f = P COS (27rfmt + P )  + f c  (22) 

where f c  is the center (carrier) frequency, p (which varies on 
the interval from 0 to 27r) is the relative position of one of 
the peak epochs in frequency with respect to the origin, and 
f m  is the modulation frequency. If we are analyzing a discrete 
signal s[nT], we also note that + f c l  must be less than 1/2; 
otherwise, the frequency modulation is not bounded by the 
Nyquist limit. 

Integrating to get the phase, we get 

which gives us the famdly of chirplets defined by 

which may be appropriately windowed, such as with a Gauss- 
ian, as was dione in (3). 

In Fig. 13, we show four examples taken from a family of 
chirplets that were derived from a warbling mother chirplet. 
We show theim in both the time domain and the TF domain 
annotated in terms of the pendulum model we now describe. 

Pendulums swinging in front of the radar (assume the 
amplitude of the swing is small compared with the length of 
the string) produce a signal that is very similar to that produced 
by radar returns from floating objects. Suppose the velocity of 
a pendulum, as a function of time, is given by 

w = pcos (27rfmt) (25) 

(the position is given by p sin (27rfmt + p ) / f , ) .  
The demodulated radar Doppler signal would then be given 

by 

(26) 

which may be analyzed using the family of chirplets given 
by (24). 

A pendulum with a long string, swinging with large ampli- 
tude in front of the radar, will produce a time series which, will 

more fully described in [59]. 

e3 [P sin(2rfmt+p)/fml 

Here, we are simplifying the description. The dynamics of the sea are 
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eliminated for clarity. 

Four examples of warbling chirp functions. Windows have been as an operator that would magnify the time-frequency distri- 
bution of g( t ) .  

When we write, for example, 

have most of its energy in the upper left hand portion of the 
space (low f m  and high p). A density plot of the transform, 
computed from the time series will show a strong peak in 
the upper left region with the peak located at the coordinates 
corresponding to the particular frequency of swinging ( fm)  
and amplitude /3. A pendulum with a small swing and a short 
length will appear as an energy concentration in the lower right 
corner of the pendulum parameter space. 

Fig. 14 shows where four pendulums would appear as peaks 
in this pendulum parameter space. Each of these four points 
in the space corresponds to the four examples of Fig. 13. 

In Fig. 15, we show the STIT computed from an actual 
radar return from a pendulum. 

Using the warbling mother chirplet, we also computed 
the “dilation-dilation” ( f m / 3 )  plane of the chirplet transform 
(Fig. 16) for the pendulum data. 

The members of the chirplet family given by (24) may be 
regarded as being related to each other by affine coordinate 
transformations in the time-frequency plane if we use the 
rather abstract notion of instantaneous frequency. Consider 

we mean to replace g ( t )  with another function that occupies 
twice the area in the TF plane. In general, such a func- 
tion probably does not exist. We noted, in the case of the 
prolate chqle t  family, that we could, however, vary the time- 
bandwidth product of the tiling by replacing the family of 
mother chirplets with a new family that had a different value of 
N W .  By similar reasoning, within the context of the warbling 
chuplet, we interpret (28) to mean “replace g ( t )  with a new 
sinusoidal-€34 function that has fi times the modulation 
index and 1/fi times the modulation frequency,” so that we 
obtain an equal dilation by fi along each of the time and 
instantaneous frequency axes. The result is a dilation of both 
the time and instantaneous frequency axes by a factor of fi. 
The law of composition, identity, and inverse within this six- 
parameter “group” is given by the usual 2-D affine group law 

‘*Although there are devices, known as pitch transposers, that attempt to 

[461. 

perform such an operation in a highly nonlinear way. 
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Fig. 15. 
small decay) sinusoidal pattem in the TF plane. 

TF distsibution of radar return from a pendulum (computed using the proposed rectangular-tiling method). Note the nearly pure (except for a 

(b) 
Fig. 16. Dilation-dilation (AtA,) plane of the chirplet transform computed with a warbling mother chirplet. The signal being analyzed is a Doppler 
radar return from a swinging pendulum: (a) Density plot; (b) shaded surface plot. 

Therefore, vve may write the warbling chirplet transform in S.fm,P,fc = (CO,fc,(l/fmP), O,O,(P/fm) d t ) l s ( t ) )  (29) 
terms of the six affine coordinate transformations in the TF 
plane: 

and refer to the subspace (Fig. 16) defined along the f m  and 
/3 axes as the “dilation-dilation’’ plane or the AtAf plane. 
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IV. CONCLUSION 

We have presented the chirplet transform, which may be 
viewed as a generalization of both the short-time Fourier 
transform (STFT) and the wavelet transform (WT). These 
generalizations are based on the fact that both the STFT 
and WT can be written as inner products of the signal 
under analysis with versions of a single analysis primitive 
(windowlwavelet) acted on by various operators. In the case 
of the wavelet, these operators result in 1-D affine coordinate 
tranformations of the time axis. In the case of the chuplet, 
these operators result in 2-D affine coordinate transformations 
of the TF plane (of the time-domain function on which they 
operate if one prefers to regard the operators as acting in the 
time domain). The family of chirplets is the result of a family 
of TF-affine coordinate transformation operators acting on a 
single window/wavelet (the “mother chqlet”). The chrrplet 
transform is the resulting signal representation on this family 
of chirplets: 

As is well known, taking the Fourier transform of a 1- 
D function results in a complex-valued function of a 
single variable. 
As is also well known, the STFT results in a function 
of two variables: time and frequency. The wavelet 
transform results in a complex function of two variables: 
time and scale. 
The combined TFS transform results in a complex 
function of three variables: time, frequency, and scale. 
The Gaussian chirplet transform (GCT) results in a 
complex function of four variables: time, frequency, 
scale, and “chirprate.” 
Another complex-valued 4-D parameter space is given 
by time, frequency, “chirprate,” and “dispersionrate.” 
This space has the interesting property that it does not 
require dilation of the mother chirplet and may therefore 
be applied to discrete mother chirplets that do not have a 
mathematical description (e.g., no need for interpolation 
or antialiasing). 
The full continuous chirplet transform (CCT) that can 
be obtained using only a single mother chlrplet results 
in a complex function of five variables: time, frequency, 
scale, chirprate, and dispersion rate. 
The multiple-mother-chirplet transform (e.g., using the 
prolate family) results in a real function of six variables: 
time, frequency, scale, chirprate, dispersion rate, and TF 
tile size. The coordinate axes of this 6-D parameter space 
correspond to the six affine coordinate transformations 
in the TF plane: translation along each of the time 
and frequency axes, change in aspect ratio, shear along 
each of the time and frequency axes, and change in 
area occupied in the TF plane. The last of these six 
dimensions is discretized, whereas the other five are 
continuous. 

The chirplet transform allows for a unified framework for 
comparison of various time-frequency methods because it 
embodies many other such methods as lower dimensional 
subspaces in the chirplet analysis space. For example, the 
wavelet transform, the short-time Fourier transform (STFT), 

the “frequency-frequency” transform, and the scale-frequency 
transform are planar slices through the proposed multidi- 
mensional chq le t  parameter space, whereas many adaptive 
methods [60]-[62] are either collections of arbitrary points 
or two-parameter curved surfaces (manifolds) taken from 
the multidimensional chirplet parameter space. In addition to 
unifying some of the existing methods, the chirplet trans- 
form provides us with a framework for both formulating and 
evaluating entirely new subspace transforms. 

As pointed out in Section I-A, many others have contributed 
directly or indirectly to the development of the chirplet trans- 
form. In many ways, however, we have taken its development 
further toward becoming a useful signal processing tool for 
practical engineering problems as evidenced by the material 
presented in this paper. 
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