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Abstract—Traditionally video surveillance consists of overhead
cameras to help authorities such as lifeguards or security profes-
sionals monitor individuals. This monitoring, if in service of the
monitored individuals, serves them only indirectly. More recently,
a new kind of sensing called “sousveillance” has emerged, as a
form of sensing by, and in direct service to, individuals. In this
paper, we explore an overhead camera (e.g. aerial drone-based
videography) to help create a form of real-time seeing aid, with
specific application to help one or more individual swimmers see
better and navigate, e.g. to avoid collisions with other swimmers
(or the walls) in pools, as well as navigating in lakes, rivers,
and other bodies of open water. Additionally the system can be
used to teach swimming (e.g. learn by seeing from a birds-eye-
view) as well as to gamify swim-based activities. SafeSwim (and
sousveillance in general) is a new form of “seeing” in which
those being watched have direct visual access to the live video
stream. It is a direct departure from traditional surveillance
where authorities such as police or lifeguards watch individuals
without giving them direct access to a live video stream.

Index Terms—Wearable computing, Wearables, Sensing, Mo-
bile computing, Swimming, Drones, Sousveillance, Machine vi-
sion.

I. INTRODUCTION

Wearable computing [1] combined with wearable AI [2]

provides a new way of sensing and undertanding the enviro-

ment around us. Wearable sensing technologies can create new

and extended human sensing capabilities which work similarly

to sensory organs. This concept is explored in Fig 1. The

human mind may be regarded as one or more feedback loops.

The human may similarly be regarded as a feedback loop

between the mind and body, i.e. efferent nerves carry signals

from the mind to the body, and afferent nerves carry signals

from the body to the mind [3], thus completing a closed loop

feedback control system [4], [5], shown in leftmost Fig. 1.

Humanistic Intelligence (HI) [6], also known as Wearable

AI [2], is a framework for wearable computers and other forms

of closed-loop feedback between a human and machine(s).

Technologies like shoes, wearable computers, bicycles, and

automobiles are technologies that “become part of us.” This

symbiosis between human and machine is often referred to as a

“humachine” [7], “cyborg” [5], bionic, or “augmented human”.

Humanistic technologies typically consist of sensors in the

machine, and our human senses, forming a feedback loop, as

shown in the center part of Fig. 1. The example shown here

is a Vuzix “Smart Swim” eyeglass or other similar augmented

swimglass. After wearing an eyeglass for a long period of
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Fig. 1: Self, technology, and society as closed-loop feed-

back systems (Humanistic Intelligence). Note the fractal (self-

similar) nature of humanistic intelligence, society, and the

smart city, etc..

time, we adapt to seeing the world in this new way, and the

technology becomes, in some sense, “part of us”, through the

long-term HI feedback loop [2].

In a given space or context, we often have more than one

humachine, e.g. we might have 2 or more swimmers wearing

the “Smart Swim” or other augmented reality eyeglass. Thus

we need to think of Minsky et al.’s concept of the “Society

of Intelligent Veillance” in which HI (wearable AI) applies

across a community [8].

As we design and build smart pools, “Smart Beaches”, smart

buildings, smart streets, and smart cities, we need to also

consider the idea of “smart people”, i.e. putting “intelligence”

(sensors and computation) on people, not just buildings and

lampposts and the skies above them. In this way, humachines

are more than just a nexus of human and machine, they form

a new society and a new concept of technology-and-society.

Therefore, HI feedback loops can be understood and classified

according to the following nested taxonomy:

• Self and technology (e.g. combined human+machine);

• Self and society (interaction between humans, huma-

chines, etc.), which includes self and technology;

• Self and the environment (interaction between the aug-

mented human and the natural or built environment, e.g.

cyborg-city interaction), which includes self, technology,

and society.

This human-centered taxonomy considers the sensory infor-

mation available at three key levels as shown in Fig 1). The

third layer, “Self and the environment”, becomes especially

clear when we finally grant individuals a birds-eye-view of

large bodies of open water, where an individual swimmer can

see not only their stroke (i.e. use our system as a way to

learn how to swim), but also the water conditions overall, such

as algae blooms, floating garbage in some places, etc.. This

insight gives an individual swimmer a new way to navigate.



For example, he or she can choose to swim along the path-of-

least-pollution, or along the path-of-maximum-safety.

Pollution or safety or other disiderata/undisiderata can be

overlaid in an augmented reality as a field, e.g. a danger-

field or safety-field, such as to guide a swimmer using this

new birds-eye-view, thus contextualizing sousveillance at its

highest level – “Self and the environment”.

This calls for a new way of thinking, in which smart pools,

smart beaches, and smart cities provide direct, and immediate

feedback to individual citizens, hence promoting the living

quality of the end-users in the system.

A. Safety and security tree

To understand our new way of thinking and contrast it

with traditional surveillance, we construct a mental model

based on a tree. We can think of surveillance (security, etc.)

as forming the trunk of a tree with various branches such

as (1) crime prevention, (2) operational efficiency (e.g. so

lifeguards can watch swimmers and see how big crowds are

getting, and thus know where to deploy additional staff),

and (3) accident prevention (e.g. automatic computer-assisted

drowning detection), etc..

This model matches what one typically finds in smart city

planning.

We propose, also, that there be roots for the tree, and

that the roots form various aspects of sousveillance (inverse

surveillance), such as to support personal safety, individual

health and well-being, etc.

The “Securitree” is composed of two main sections, with the

parts of the tree above the ground representing surveillance and

the parts of tree below the ground representing sousveillance.

We regard security as the trunk of a tree having surveillance

branches like public safety, operational efficiency, and crime

prevention. There are surveillance sub-branches, e.g. crime

prevention has sub-branches such as robbery prevention, vio-

lence prevention, . . . . The tree is rooted in sousveillance, with

roots like personal safety, “suicurity” (corruption prevention),

personal efficiency, and individual’s health. Sousveillance has

sub-branches, e.g. individual health has sub-branches such as

physical, affective, mental, (which itself has sub-roots VMP,

seeing aid, . . . ), as shown in Fig 2.

B. EyeTap

The EyeTap is a wearable device worn in front of one

or both eyes, acting as if the eye itself is a camera. A

display overlaying computer generated imagery can be viewed

from the right eye. The left eye is unobstructed. Similar

to the EyeTap, our SafeSwim™ system allows the user to

be fully immersed in their surroundings. The user is able

to see unobstructed through one eye, while their other eye

has a display providing real-time safety-oriented situational

awareness as demonstrated in Fig 7 from video processed from

an overhead DJI Mavic Mini drone.

C. Immersive/Submersive (“Mersive”) VR

Fully immersive/submersive (underwater) VR has been pre-

viously explored through “immersive multimedia” (underwater
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Fig. 2: The “Securitree”(Security Tree) model

Fig. 3: Underwater virtual reality has been a well-established

practice over the past 20 years or so. It provides a full

immersive/submersive experience in which it is very easy to

suspend disbelief while floating in a virtual world.

interactive virtual reality) [9] and VR float tanks [10], [11]

using the Mersivity™ underwater VR headset (Fig 3).

D. Background

The tracking of swimmers is a well-researched field. One

of the state-of-the art swimmer tracking algorithms uses non-

linear joint transform and colour histogram analysis to ac-

curately detect the locations of the swimmers. Such a hybrid

approach is needed for the reliable detection of the swimmers.

In such an environment, the rapid movements of swimmers,

bodily rotations, as well as water splashes can hinder the

reproducibility of the detection [12], [13].

II. METHODOLOGY

A. Proposed system architecture

In a swimmer’s context, in order to close the HI sensory

feedback loop, some form of sensory technology is required.

We are proposing to use a “sousveillance” (inverse surveil-

lance) drone to capture a bird’s eye view of the swimmer and

make it available to the swimmer in real-time (this immediate

availability to the end-user is what makes it sousveillance

rather than surveillance). The swimmer is equipped with a
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Fig. 4: The SafeSwim apparatus summary: an overhead drone

oversees the whereabouts, swimming path, and the surround-

ings of the swimmer and computes and displays useful infor-

mation to the swimmer, as a means of aiding the swimmer to

see better.

head-mount mediated reality device capable of displaying the

drone footage to the swimmer. Other useful information such

as the swimmer’s whereabouts, surroundings, and trajectory

are then proposed to be overlaid onto the mentioned footage. A

pictorial representation of our proposal is displayed in Fig. 4.

B. State of the art

The downside of the mentioned swimmer detection method

is its lack of computational simplicity that would allow it to

run in real-time. In order to make the detection algorithm

run in real-time, solutions such as classical thresholding or

Convolutional Neural Network methods are more appropriate.

In order to run a classical thresholding algorithm, a distinctly

coloured object was made present in frame. In order to realize

this goal, the swimmer that was intended to be highlighted in

the drone footage (the swimmer of interest) wore a brightly

and distinctly colored (neon orange) swimsuit to separate the

swimmer from the surrounding background in the frame. See

Fig.5 displays the swimmer of interest wearing neon orange

swimming trunks having unique color that was not present

anywhere else in the swimming area.

Convolutional Neural Nets (CNN) were also implemented in

parallel with the classical thresholding method for tracking the

swimmer’s path. This is further discussed in the computational

methodology section.

C. Physical Experiment

We performed multiple experiments at multiple beaches and

public pools in the city. In each experiment, the “User” would

wear a distinct brightly colored swimsuit such as a pair of neon

orange swimming shorts to facilitate the upcoming measures

of post-processing the video footage.

While swimming, the “User” would try to use the image

overlaid from the head-up display to guide his directions in

Fig. 5: Through use of neon orange swimming trunks, the

targeted swimmer can be more quickly detected through

classical thresholding with less delay (lag) than more advanced

tensor-flow methods. Note the orange pylons around the pool

also trigger the thresholding, so it is required to ignore this

color when it occurs outside the bounding box of the pool.

swimming. Meanwhile, a drone would be capturing a video

stream from the swimmer. The captured footage was then

streamed onto the swimmer’s MR wearable. Fig 6 better

demonstrates the experimental setup. The way this was done

was by pointing a smartphone camera at the drone’s remote

controller, which displayed the drone’s live footage. Therefore,

the mentioned was done as a compromising alternative. A light

shroud shown was constructed to be able to effectively capture

the screen of the drone controller in bright sunny days. In the

future we will construct our own special-purpose sousveillance

drone and write our own software to control the drone so that it

can provide realtime chromakey video feedback with overlays

with no noticable delay.

D. Video Processing

The videos were simultaneously recorded on the SD card

that is available on the DJI drone, as well as streamed real-

time to the controller cellphone. The videos were divided

into 30 second segments to run post analysis. Each frame

was then independently processed using equation 1. In this

equation, “I” represents the input video, “C” is the threshold,

and “Output” is the binary mask produced from the operation.

The “C” variable had to be manually adjusted for each footage,

due to the different lighting conditions present in each drone

video. This variable was set in such a way that resulted in
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Fig. 6: Realtime signal flow path: iPhone on drone controller with EasyCast to Samsung S8 as repeater, to laptop computer

for processing, to Vuzix SmartSwim (underwater head-mounted display) worn by swimmer.
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Fig. 7: Custom android apps for sending video feed from

transmitter to receiver.

the minimum number of false positives, as well as the correct

identification of the swimmer’s neon swimming trunks.

Output = (I(x, y, t)R − I(x, y, t)G − I(x, y, t)B) > C (1)

For giving an experience of MR, we live-streamed the

camera feed from the drone to the right eye of the swimmer

wearing Vuzix Smart Swim. To achieve this, we used the real-

time streaming network protocol (RTSP). We used two custom

android apps - one acted as a transmitter and the other one

as a receiver. The transmitter acted as an internet protocol(IP)

camera and we live-streamed over a local network created via a

mobile hotspot. The mobile hotspot also increased the wireless

transmission range of the whole system by positioning it about

midway between the transmitting camera and the swimmer

(e.g. right at the shore of the beach, or right at the fence

around the pool).

The receiver app was installed on the smart swim glasses

which was running on an Android operating system. The

receiver app was fit to the screen size of the Smart Swim glass.

We used multithreading to handle incoming video data on the

Smart Swim glass to reduce the delay and blockage of the main

thread of the app in order to optimize the responsiveness of

the overall experience. With the vibrant high-definition (HD)

waterproof screen, the swimmer was able to see the live stream

with clarity while swimming providing constant feedback of

the environment ahead.

From the recorded video data, random frames of the pool

were extracted. Each frame was labeled with the swimmers

as persons for further training on a YOLOv3 network. It was

required since normal YOLOv3 was not able to detect persons

in the pool from the bird’s eye view. We used transfer learning

on the YOLOv3 network to detect humans in the pool from

the top perspective. For this, we used labelImg to label the

persons and then we trained our network over Google Colab

GPU.

III. TESTS AND RESULTS

After running the classical thresholding algorithm, red ob-

jects in the frame were able to be identified and highlighted.

Fig 8,9,10 displays screenshots of the drone footage before

and after being fed into the classical thresholding algorithm,

described in equation 1 with other orange objects in the frame.

With the video data collected over several experiments,

random frames were used to train a custom object detection

model for detecting humans in the bird’s eye view as shown

in the figure, Fig 12. The best mean average precision (mAP)

that we achieved was 0.7144.

Running a YOLOv3 model on HD frames will reduce the

frame-rate processed, leading to delay in the feedback of the

swimmer and reducing the size of the images, diminishing

the size of the humans in it, and making it difficult for the

model to detect. Smaller object detection is one of the current

research areas in computer vision. One of the solutions is to

use the focal loss as the loss function while training the model.

Also, once the model is able to detect all the humans in the

pool, the swimmer can choose to get feedback on his/her path

and can also get notification based on the distance to other

swimmers (e.g. early warning of possible collision) as shown

in the figure, Fig 11.

IV. OTHER RELATED APPLICATIONS

The proposed personal (sousveillance-based) computer vi-

sion system has many uses beyond merely navigation. It also

opens up possibilities for ”citizen science”. The term “Open

Science” was coined by Mann in 1998 cite Open Science,

Open Source and R by Andy Wills, Linux Journal, February

19, 2019, and is a sousveillant-systems approach to science as

may be done by ordinary individuals in their day-to-day life.

Various sensors make it possible for large databases to be built

up to study emergent phenomena.

Another use-case is in activities like citizen-driven beach

cleanup where ordinary people make the world a better place.

Here for example we observed and mapped the location of



Fig. 8: Screenshots of drone footage before and after being fed into the classical thresholding swimmer detection algorithm.

The red arrow highlights the swimmer of interest.

Fig. 9: Screenshots of drone footage before and after being fed into the classical thresholding swimmer detection algorithm.

The red arrow highlights the swimmer of interest.

Fig. 10: Screenshots of drone footage before and after being fed into the classical thresholding swimmer detection algorithm.

The red arrow highlights the swimmer of interest.



Fig. 11: The swimmer can get real time update of his/her distance with other swimmers. The closer ones shown in red. Blue

arrow points to the swimmer of interests

Fig. 12: Detection of humans from the bird’s eye view.



large quantities of sharp metal underwater objects along the

beach that represented a safety hazard. Our beach cleanup

effort consisted of locating hazardous objects and removing

them from the beach. In one example a large rusty metal railing

with a sharp jagged metal base was tipped over on its side such

that the sharp metal base was facing upwards on the bottom

of the lake in a shallow area where swimmers would bump

into it. One of the swimmers (S. Mann) was able to note its

location from the overhead drone feed, and waited until a calm

day (2020 November 9, wind speed 5km/h) to swim out and

tie a long rope to it. A large number of volunteers on land

pulled on the rope while swimmers S. Mann and T. McKee

eased it off the bottom of the lake and guided it out. Many

other sharp jagged metal hazards were removed in a similar

way using the augmented reality capability of our system to

assist in beach cleanup. See Fig. 13 and Fig. 14.

Fig. 13: Large quantities of sharp jagged pieces of rusty metal

were removed once they were located and identified with

SafeSwim. Author S. Mann swam out with a rope and, diving

down, tied the rope to a large jagged metal railing.

V. CONCLUSION

We proposed a taxonomy and wearable computer sys-

tem based on this taxonomy to help people sense and

understand the world around them on the levels of (A)

Fig. 14: Once the rope was tied, a number of volunteers

assisted in pulling the railing out.

Fig. 15: Virtual Reality waterball (Mersivity headset).

Self-and-Technology, (B) Self-and-Society, and (C) Self-and-

Environment. The proposed framework and the functional

system helps us understand the often blurry lines between the

three levels of the taxonomy while meaningfully enhancing

the wearer’s senses.

VI. FUTURE WORK

We have an ongoing project entitled “Equiveillance, Co-

vidized Surveillance...” funded by the McLuhan Program in

Culture and Technology to explore the socio-political elements

of Weartech™. As a precursor to this project, consider the

familiar waterball we often see in pools and lakes (Fig 15),

as a form of social-distancer on land (Fig 16). We (S. Mann,

C. Pierce, C. Tong, and C. Mann) have been exploring the

social-commentary of social-distancing. See Fig. 17. Along

these lines, SafeSwim may be regarded as part of the transi-

tion from surveillance and environmentalism to veillance and

vironmentalism on land or in water.
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