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CONFERENCE CHAIR’S REMARKS + INTRODUCTION

Steve Mann

A WARNING ABOUT TECHNOLOGY AS A PRISON

“Big Tech” and governments are together waging

a war on swimming, cycling [1], and walking in the

woods [2]. At the same time they’re building massive

highways, more cars (some self-driving), and massive

data centres, creating and deploying technologies that

disconnect us from nature and from each other, while

building technology in such a way that we become

dependent upon it, or may even be required to use it,

even if we don’t want to [3], [4], [5], [16].

Together with Nobel laureate Geoffrey Hinton, as

well as others like Jeff Bezos, Julian Assange, Bill

Gates, Elon Musk, Edward Snowden, Ray Kurzeil,

and Warren Buffet, I am working hard to safeguard

humanity from these and other similar existential

threats, through the Lifeboat Foundation Guardian

Award (https://lifeboat.com/ex/guardian.award).

This Conference Chair’s Remarks + Introduction is

a problem-statement of sorts, followed by an allegory

to a possible solution, The Ship of Kolympi. Kolympi

is just one instance and we leave it to the imagination

and creativity, on the part of the reader, to generalize

to other forms of cyborg technology, and technology

in general.

XIR (EXTENDED INTELLIGENCE / REALITY)

Mersivity is technology that connects us with each

other and our surroundings (environment), embodying

XR / XI (eXtended Reality / eXtended Intelligence)

which is “a form of extended intelligence and ex-

tended collective intelligence ... [to] ... help extend

our sensory intelligence on land, in air, or in water

... Unlike VR which is typically a solo experience, XR

is a shared experience...” [7]. It is also an umbrella

term to encompass virtual reality (VR), augmented

reality (AR), mediated reality or mixed reality (MR),

metaverse, Internet of Things (IoT), spatial computing,

and digital twin, “as the unifying framework that not

only interpolates across these diverse realities but also

extrapolates (extends) beyond them to create entirely

new possibilities. XR is the physical spatial metaverse,

bridging the physical world, the virtual world of ar-

tificial intelligence, and the social world of human

interaction” [8], as illustrated in Figure 1.

XR also embodies XI (eXtended Intelligence)[7],

and is therefore sometimes written XR/XI or XIR

(eXtended Intelligent Reality), stylized as X IR, XR,

or XR, or simply as XI, especially when emphasizing

its ability to embody AI as an extension of the

physical world. Thus XI (X IR) is the overarching

interpolator and extrapolator of the “alphabet soup”

of realities and intelligences as shown below:

.

Fig. 1: SocioCyberPhysical space is a three-

dimensional space of the social (red axis), cyber (green

axis), and physical (blue axis). It shows how XIR

(XI/XR) is not merely an umbrella term encompassing

AI, VR, AR, Metaverse, Spatial Computing, IoT, etc.,

but, more importantly, it is a way to extend beyond

these. (Used, with permission, from [8].)

TECHNOLOGY AT THE MOST FUNDAMENTAL LEVEL

OF HUMAN EXISTENCE

I’ve been a “cyborg” for more than half a cen-

tury, inventing, designing, building, and embodying

computer vision systems that extend my reality and

intelligence since my childhood, more than 50 years

ago [7]. During that time, I’ve faced a great deal of

“cyborg discrimination” and been the victim of what

many in the mainstream media have referred to as the

world’s first cyborg hate crimes. I’ve not only been

refused entry for wearing a computerized seeing aid,

but also been physically assaulted by security guards,

e.g. pushed down the stairs by security guards at the art

gallery, because they were afraid my seeing aid might

be recording copyrighted works of art, even though

it was simply helping me see and not recording. In

some sense, these attacks created a need to redesign

the computer vision system so that it could also make

recordings to use as evidence. Thus their fear of

recording became a self-fulfilling prophecy, analogous

to the “Streisand Effect [9]” where in my case, violent

attacks on the right to see created a need to develop

computational memory and sharing of that memory...

collecting evidence.

Thus what began as an experiment in “Wearable

AI [10]” expanded in scope to also became a per-

sonal safety/security system giving rise to something

I call “sousveillance” (“undersight”) akin to surveil-

lance (oversight), but serving people rather than large

establishments.

There are now thousands of books and re-

search papers written on sousveillance and this

work is finally being recognized as important

to safeguarding humanity, e.g. I’ve received the

Lifeboat Foundation Guardian Award for this work:

https://lifeboat.com/ex/guardian2024

In the 1970s people used to walk across the street to
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avoid me, but I noticed a societal shift around the 1980s

when people would walk across the street to come and

greet me as I’d become a bit of a celebrity of sorts,

at a time when computer technology was becoming

fashionable. In 1991, I brought my inventions to MIT

to found the MIT Wearable Computing Project. The

founding Director of the Media Lab declared that

“Steve Mann is the perfect example of someone... who

persisted in his vision and ended up founding a new

discipline” (see articles and archive of video broadcast

in http://wearcam.org/nn.htm). See Fig. 2.

The time was finally right for this technology and

the ideas surrounding it to spread quickly. Even the

fun playful new word I made up for it, “sousveillance”

finally made it into the OED (Oxford English Dictio-

nary).

VIRONMENTS (VESTEMENTS, VEHICLES, AND

VESSELS)

The concept of Mersivity goes beyond just wear-

ables. More generally, it includes other technologies

that surround or enclose us, that extend our intel-

ligence, or the like, such as vehicles, vessels, and

vestments.

NO WAY TO “OPT OUT” OF TECH/GOVERNANCE

Technology (e.g. AI, as well as excessive governance

of technology that mandates or requires it) is a Porsche

with no brakes. It has become unstoppable. Our only

hope now is to steer it wisely.

It is almost impossible now to avoid being recorded

and we are surrounded by AI whether we like it or

not. I have finally won the right to wear a computer,

camera, seeing aid, etc., but society now faces a new

problem. Rather than being discriminated against for

using or depending on technology, we now face the

prospect of being discriminated against for not using

or not depending on technology. Rather than facing

cyborg hate crimes, we now face the prospect of hatred

or discrimination for being technology-free. We are

entering a cyborg world with no way to opt-out of

being a cyborg.

ONLY CYBORGS ARE ALLOWED FOOD AND WATER

I want to recount a very simple personal example.

Late one night a group of us needed food and water,

and there were no public drinking fountains. The only

food and water source was a restaurant that was closed,

except for the drive-through. When we walked up to

the drive-through window to buy some food and ask

for a drink of water, we were refused service because

we were not in a vehicle.

Purely out of curiosity, I asked if a motorcycle or

bicycle would count as a vehicle. Manfred Clynes

coined the word “cyborg” (cybernetic organism) in

1960 [11] and his favorite example is a person riding

a bicycle [15]. So what we are now seeing is a kind

of inverse-cyborg discrimination, i.e. a discrimination

against those without technological extensions of their

mind and body.

On a more practical note, I told the restaurant clerk

about a dumpster we were able to find that contained

some old tires and scraps of metal in it, and I asked

her how much of that metal and tires we needed to

strap onto our bodies to be able to get a drink of water

and buy some food.

I was formulating in my mind a concept of “mini-

mum viable vehicle” as something not so much about

function as about appearance, that is, not so much

about becoming a cyborg, but more about looking

like one, or at least completing a kind of bureaucratic

“check box” for being considered a cyborg.

When dealing with this kind of inverse cyborg dis-

crimination, we can observe a wide variety of different

outcomes depending on the wide range of people, pol-

icy, and opinions at various individual establishments.

So let us pick another example which is more

universal, consistent, and central to the theme of this

Symposium: the most fundamental human right, the

right for a non-cyborg to access water, broadly, as it

pertains to government and governance.

DOWNTOWN TORONTO WATER ACCESS

Toronto is the largest city on the Great Lakes which

hold 21% of the world’s freshwater supply (85% of

North America’s). That’s more than 1/5th the world’s

supply of freshwater. In this sense, Toronto is the

world’s freshwater capital and should set the best

examples in terms of freshwater stewardship. Toronto

has one and only one accessible beach, i.e. only one

beach where a person in a wheelchair can get all the

way to the water’s edge, namely HTO Beach. Whereas

there are claims that other beaches such as Woodbine

Beach are accessible, it turns out that their wheelchair

ramps only go within about 30m of the water’s edge.

This can be confirmed by looking at satellite images.

I have a disability and I use a specially modified

wheelchair for stand-up operation (seat removed, hand

piece extended for spinal support while standing upon

it). My daily exercise is at HTO Beach because it is the

only beach in Toronto that is accessible. We’ve created

an outdoor classroom, lab, and outdoor university

there, since I have a lab attached to the wheelchair.

We collect water samples and do research on cyborg

technologies that connect us to our environment (Mer-

sivity / XI / XR). See Fig. 3.

Of all the beaches in Toronto, HTO Beach, which

opened to the public 18 years ago (2007) is perhaps

the most iconic in Toronto, as it is in the heart of

downtown Toronto directly in front of the Rogers

Skydome baseball stadium, home to the Toronto Blue

Jays of Major League Baseball, situated at the base of

the CN Tower. Many people who come to Toronto for

the first time visit this location, as it is Toronto’s most

iconic, to visit the CN Tower, the Rogers Skydome,

and then go for a swim at HTO Beach. See Fig 4

Although this location has a step-entry into the water,

the City of Toronto refers to it as a “beach” and

has also provided beach sand that can be optionally

bypassed for clean (sand-free) water entry. The clean

sand-free entry is helpful for accessibility. Note also
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Fig. 2: Evolution of Steve Mann’s wearable AI smart glass.

Fig. 3: Outdoor lab/classroom at HTO Beach, which

is Toronto’s only accessible beach.

the WALLadder (Wheelchair Accessible Long Ladder).

These long-ladders are rare but welcome to wheelchair

uses as they offer increased safety and accessibility for

swimmers who are accessing the beach by wheelchair.

NO SWIMMING

Interestingly, swimming is forbidden here and else-

where in Toronto in all but a very limited number of

places: “No person shall bathe or swim in the waters

of the Port and Harbour unless in an area designated

for such activity as authorized by posted signs.” –

Harbour Master of the Port of Toronto (Fig 5). This

excludes swimming in some of the safest and cleanest

waters around the downtown Toronto area, including at

Toronto’s only accessible beach, HTO Beach, where

we have been testing water quality and finding it is

often clean and swimmable. This rule unfairly dis-

criminates against persons with limited mobility by

giving them no lake access. There are only a few

permitted swim areas and they are all quite far from

the downtown Toronto core, and none of them are

wheelchair accessible.

Thus we affectionately refer to HTO Beach as

TOAB (Toronto’s Only Accessible Beach), i.e. the only

place for persons with disabilities to swim in the lake

is a place where swimming is forbidden.

Thousands of people swim in downtown Toronto

at Ontario Place (designed as “the cottage for people

without cottages”) as well as at HTO Beach and risk

receiving a fine or citation from Marine Police (See

Fig 6).

Whereas Toronto ought to lead the world in making

its waters accessible to persons with disabilities and to

everyone, we see the opposite, where other cities like

Kingston Ontario lead the way toward water access

with a downtown swim area that many describe as a

mini-version of HTO Beach. This area is open 24 hours

a day, unsupervised (no lifeguard staff) and simply

labeled “Unsupervised swimming . Swim at your own

risk”. See Fig 7. This swim spot in downtown Kingston

opened on July 26, 2018, after hundreds of people

protested the “NO SWIMMING” rule by swimming

there in violation of the rule.

Around the world people are protesting against rules

against swimming, while at the same time advocating

for safe clean water as a basic human right. Moreover,

safety itself is a basic human right, which we must

protect while governments attempt to remove bicycle

paths and sidewalks to put in more roads and high-

ways [1]:

The Ontario government has officially passed

Bill 212 — a controversial piece of legisla-

tion that gives the province sweeping control

over municipal bike lanes and lets construc-

tion of Highway 413 begin before Indigenous

consultation or environmental assessment is

complete.

The fast-tracked bill, which passed at

Queen’s Park Monday, requires municipal-

ities to ask the province for permission to

install bike lanes ... and allows the removal

of three major Toronto bike lanes on Bloor

Street, Yonge Street and University Avenue

... amendment to the bill from last week,

which appears to protect the government

from lawsuits should someone be hurt or

killed after the removal of bike lanes.

Bicycle lanes are also used by persons with disabilities,

e.g. to get to Lake Ontario not just for recreation, but

many with disabilities have a medical need for water

for rehabilitation.

BIG-CYBORG V. LITTLE-CYBORG

The battle between motorists and cyclists is perhaps

best captured by the “STREET FOR PEOPLE... CARS

ARE GUESTS” meme as shown in the photo of Fig. 8.

But this meme is fundamentally flawed because cars

usually contain at least one person (e.g. a driver, or

even if the car is self-driving, it likely contains at least

one passenger). Thus it might be more correct to say

that streets are for little-cyborg-tech (shoes, clothing,

bicycles) and that people “wearing” big-cyborg tech

(cars and trucks) are guests. This reality brings us to the

concept of cyborg scalespace introduced in 2001 [3]

which we shall introduce in Fig. 1 of the following

paper “The Ship of Kolympi”.
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Fig. 4: Four photos from HTO Beach which is

Toronto’s only accessible beach. It is located in the

center of the downtown core directly in front of the

Rogers Skydome baseball stadium at the base of the

CN Tower.

Fig. 5: “No person shall bathe or swim in the waters of

the Port and Harbour unless in an area designated for

such activity as authorized by posted signs.” – Harbour

Master of the Port of Toronto

Fig. 6: Offence Notice for swimming outside one of

the limited designated swim areas. It appears, though,

that even the officer was confused as to the law,

having crossed that out and written something about

“prohibited activity on premises” as if to suggest that

the lake is a “premises”.

GOVERNMENT BIAS IN FAVOUR OF BIG-CYBORG

We must recognize an inherent conflict-of-interest.

Governments fund themselves from tax dollars, and

would thus tend to favor cars because they have a

higher purchase price than bicycles, and cars also

involve purchase of gasoline, insurance, licensing fees,

and other indirect costs like increased healthcare costs

associated with lack of physical activity, obesity, etc..

Understandably, governments can maximize tax rev-

enue by discouraging swimming, walking, cycling,
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Fig. 7: Gord Edgar Downie Pier at Breakwater Park in

downtown Kingston Ontario is open 24 hours a day,

for unsupervised swimming (no staff present) and is

simply labeled “Unsupervised swiming . Swim at your

own risk”.

etc., which generate very little cash flow, while en-

couraging use of motorboats and motor vehicles which

generate more cash flow (and thus more tax dollars).

Indeed, Ontario’s slogan / tagline changed from “Keep

it Beautiful” and “Yours to Discover” to now become

“Open for Business”.
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The Ship of Kolympi: Opting out of the
world’s oldest cyborg technology

Steve Mann

Fig. 1: The Ship of Kolympi asks questions about the right to choose not to use cyborg technology. Here an

inflatable swimming pool is placed aboard a private vessel...

Abstract—In 1960, Manfred Clynes coined the word
“cyborg” (cybernetic organism) as a nexus of humans and
technology. His favorite example of cyborg technology is
the bicycle. I have argued that an even better example is
the boat, ship, or vessel. Indeed, the word “cybernetic”
is an Ancient Greek word “kubernetes” which means “to
steer” a vessel, in regards to a helmsman (“kuberman”),
and forms the word “governor” in the sense of the
Latin word “gubernare” meaning “to steer or govern”
(as in “gubernator” or “gubernatorial” which means
“of or relating to a governor”). Accordingly, “The Ship
of Kolympi” is an allegory for responsible sociocyber-
physical technology governance with regard to cyborg
technology in its many variations, including its absence.

INTRODUCTION

As a metaphor we might regard technology (AI,

surveillance, and XR/XI cyber/cyborg-tech) as a self-

driving Porsche with no brakes in the sense that it is

unstoppable today. Although we can’t stop it, it has a

rudder and we can still steer it. We must steer it, to

chart a safe and sustainable course for the future of

humanity and Earth.

Cybernetics (cybersecurity, cyborgs, and everything

else “cyber”) comes from the Greek word kubernao,

which is the root of the English words “govern”,

“governance”, and “cybernetics”. The word originally

referred to steering a ship, but has now evolved into

broader ideas of steering, guiding, or governing tech-

nology and society in general.



I’ve often been called “The world’s first cyborg” in

the mainstream media [13], [14], but Manfred Clynes,

who coined the term “cyborg” in the 1960s often said

that his favorite example of “cyborg” technology is the

bicycle [15] and bicycles have been in existence for

about 200 years!

Moreover, I’ve even argued that boats or vessels

upon the water are the world’s first cyborg technolo-

gies, i.e. the world’s first cyborgs existed more than

a million years ago, before the invention of clothing,

before the invention of the wheel, and even before the

existence of homo-sapiens. It was our ancient hominid

(hominoid, Homininae) ancestors who were cyborgs

aboard vessels more than a million years ago [16].

To stay true to the aquatic origins of all things

“Cyber”, Toronto serves as a good example to the rest

of the world. It is the largest city on the Great Lakes.

The Great Lakes hold about 1/5th of the world’s (about

85 percent of North America’s) freshwater supply. The

world’s largest lake (which holds about 1/10th the

world’s freshwater supply) is located in Ontario, of

which Toronto is the capital.

Water is the foremost of today’s concerns, from

cooling data centres, to environmental issues brought

on by AI.

Cybernetics + government today tends to prioritize

development even if it damages the environment and

our humanity. Presently, the Government of Ontario

in Canada is removing bike lanes and has a ban

on the installation of new bike lanes. Developers are

often automobile-centric. The removal of bike lanes

is intended to make more room for cars. Removal of

sidewalks could be a next logical extension of this gov-

ernance, to create more room for self-driving cars that

carry us from our homes to supervised walking areas

that might have names like the “Sunnyside Walking

Pavilion” or “Woodbine Walking Station”.

We’re also seeing over-development of forests and

beaches like the Greenbelt and Ontario Place, taking

away public access to its accessible beach, and remov-

ing Toronto’s only public accessibility ramps. Thanks

to this development, many persons with disabilities are

no longer able to access Lake Ontario.

Our political leaders are prioritizing large motorized

boats like Hoverlink. The proliferation of larger and

faster vessels makes swimming, paddling, and rowing

more dangerous. Political leaders are clearing massive

numbers of trees, e.g. downtown Toronto’s only beach-

front forest was cleared, under cover of darkness in

one night [17], to prepare this public space for a 95-

year lease to a private foreign spa company. It has even

been speculated that there is an incentive for large spa-

building corporations to “endangerify” or “ensewage”

the lake in order to sell more pool passes [18] (“Toxic

Brand”). We call this phenomenon “Denatured Water”

akin to denatured alcohol (deliberate poisoning) and

created some art installations, Denaturement.com as

parody or allegory. We created an ice cream parlour

serving denatured ice cream for display purposes only

(no eating or tasting), as well as a pub with only

Fig. 2: Endangerment as Denaturement. Denatured

whiskey, rum, etc., was created as an art installation

to ask if “ensewagement” is a deliberate attempt at

denaturing public waters as a means of selling more

bottled water and pool passes (i.e. to keep people from

drinking from or swimming in the lake) [18].

denatured spirits, wine, and beer for display purposes

only, no tasting or drinking. See Fig 2.

Safety is a basic human right, as is accessibility to

water by small entities like swimmers, paddlers, and

rowers (“little-cyborg” tech), not just big entities like

motorboats and big yachts (“big-cyborg” tech).

Efforts to clean up Lake Ontario have been pro-

gressing well, and there are now places within the

inner harbour where it is safe to swim during much

of time when there has not been a recent rainfall. We

have finally learned that it makes more sense to just

keep the lake clean than to pollute the lake raising the

difficulty of purifying the water for uses like drinking.

To emphasize this need, I created an art installation I

called “Immersive Van Gogh” using a series of under-

water Van Gogh paintings to ask the question “Would

you throw garbage or sewage into an art gallery?”.

See Fig 3. By turning the lake into an art gallery,

the Immserive Van Gogh Exhibit/Installation suggests

respect for the lake. We installed also a camera looking

at the paintings as a pollution monitor. See the camera

and solar panel in the lower-right corner of Fig 3 and

the electrical box at the bottom of the image.

We call upon governments to balance the monetary

big-business pressures of development, with main-

taining access to the “little business” of swimming,

paddling, and rowing.

As an allegory for responsible governance, we prof-

fer “The Ship of Kolympi” as a thought experiment

about the freedom to access public space without being

required to purchase, rent, or otherwise hire or possess

a conveyance (vehicle, vessel, or the like).

For example, a person without a boat is often

forbidden from accessing or entering water even when

it is safe to do so. Similarly, a late-night pedestrian or

cyclist may be denied access to food and water at a

restaurant when only the drive-through window is open

(as I explained in the Introduction).

Consider the fundamental human right to safe access
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Fig. 3: Immersive Van Gogh Ex-

hibit/Installation/Pollution monitor: the series

of underwater paintings is also monitored by a camera

system (see camera and solar panel in the lower right

corner of the image).

to water for swimming or bathing (e.g. a cold-plunge

for health, therapy, or spiritual healing). Everyone, in-

cluding those with disabilities, has a basic right to safe

water access, but that access is being taken away little

by little, with a proliferation of ”NO SWIMMING”

signs, along with commercial developments of the

waterfront that leave few safe places to launch a kayak,

canoe, or paddleboard. Due to development, Toronto

now has only one remaining beach, HTO Beach, that

is wheelchair accessible all the way to the water’s edge.

The water quality there is quite good most of the time,

but it features ”NO SWIMMING” signs and Marine

Police who work hard to keep people out of the water.

My thought-experiment begins with a full-size con-

veyance (e.g. ship or vehicle), from which pieces

or parts are removed or replaced with smaller ones,

until we reach a modest human-scale. It is perhaps

analogous to “The Ship of Theseus” in which parts

of a ship are replaced over time and the question is

whether it is the same ship even after all of its parts

have been replaced with new parts leaving no original

parts. My question is not so much about the identity

of the ship but, rather, of its mere existence.

Consider first a large cruise ship that may have

several pools that can be used, even when the ship

Fig. 4: The Ship of Kolympi scaled down to a single

pool for a single user (AI-generated figure).

Fig. 5: Modular version of The Ship of Kolympi made

from an inflatable children’s wading pool placed on

top of a large family-sized paddleboard. This is an AI-

generated image based on the photograph of Fig. 1.

is docked at, or passing by, a ”NO SWIMMING”

beach. The pools could be filled with chlorinated water,

or perhaps clean saltwater or freshwater from the

surrounding ocean or lake, if the surrounding water

were clean enough. Consider next, downsizing that

ship (or building a series of ships each one smaller

than the one before it) to a ship with only one

pool, as shown in Fig. 4 (AI-generated figure). Here

the vessel is controlled by way of a cybernetic pool

that senses water-flow using underwater sensors, so

that the swimmer can steer and control the vessel

by swimming in the pool. Now suppose, rather than

building a ship with a pool in it, we simply purchase

a low-cost children’s wading pool and place it on

top of a family-size paddleboard, such as a 7-person

Bodyglove Crusader, as shown in the photograph of

Fig 1 and as illustrated in the AI-generated image of

Fig 5. In the setup shown in the photograph of Fig 1,

there are two SQ34 hydrophones in the pool, each

receiving water wake from the swimmer in the pool
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Fig. 6: Swimming in my own private pool aboard my

own private vessel. Presently the pool contains more

than 320 million cubic miles (more than 1300 cubic

kilometers) of water. For safety, the vessel is tied to

a rope so that it cannot go more than about 30 feet

(about 10m) from shore.

and each being amplified and fed to a thruster on the

paddleboard. The port-side thruster is responsive to an

output of the port-side hydrophone and the starboard

side thruster is responsive to an output fo the starboard-

side hydrophone. So when the swimmer swims to

the right, the ship steers to the right, and when the

swimmer swims to the left, the ship steers to the left.

In this way the ship is controlled by swimming in its

pool. Thus the swimmer has the feeling of swimming

in the lake, but is not guilty of swimming in a NO

SWIMMING area, any more than swimmers aboard

a cruise ship are guilty of swimming when using the

pools aboard the cruise ship.

In the prototype of Fig 1, the means of propulsion is

by way of human-powered electric thrusters powered

from an array of hydrophones that generate electricity

from swimming in the pool. Thus the “ship” is pro-

pelled forward by swimming in its pool. Here the pool

water is totally separate from the lake.

Now suppose that pool were to be directly con-

nected to the surrounding water by a pipe of ever-

increasing size. Eventually, as the ship gets smaller,

and the pipe connecting the ship’s pool to the lake gets

larger, we might approach something that resembles

the Intex Relaxation Island Float Raft, which is a 7-

person vessel, topologically equivalent to a torus (swim

ring), as shown in Fig. 6. No lifejackets are legally

required as the vessel is not underway. Lifejackets

should always be worn for safety when aboard a vessel

that is underway, but it is difficult to swim wearing

a lifejacket, so it is common and safe to remove the

lifejacket to jump into a pool that is aboard a vessel.

For safety the vessel is tied to shore. Because mooring

is not allowed, the other end of the rope is tied to my

modified wheelchair which is legally considered part

of my body. Thus I am swimming in a pool aboard

my own private vessel that is tied by a rope to a part

of my body that is on shore. The pools is bottomless

and its water is the lake’s water which is connected to

the world’s oceans, and therefore the amount of water

in my pool is the water of the Great Lakes and the

oceans of the world. In this sense we have more than

Fig. 7: State-of-Float™ research aboard the floating

island which is also used for cold plunges and cold-

plunge research.

320 million cubic miles (more than 1300 million cubic

kilometers) of water in this pool.

We also use the vessel for research on what we

call State-of-Float™ , e.g. mindfulness and medita-

tion using the InteraXon Muse brain-sensing headband

(Fig. 7), as well as for cold-plunges in its on-board

pool. See Tzanetakis et al. in this Symposium Pro-

ceedings.

It is not hard to imagine that vessel decrease in size

to a 5-person, 4-person, 3-person, 2-person, then 1-

person swim island like a 1-person tire inner-tube or

swim ring.

Alternatively, consider an inflatable rowboat with the

bottom cut out of as shown in Fig. 8 and in the video at

https://www.youtube.com/watch?v=8GBwDQHAHo8

showing the construction process (e.g. unboxing

of the new vessel, inflating it, and cutting out the

bottom), and getting it underway. For safety, I carry

two lifejackets aboard the vessel, one for myself,

and an additional lifejacket in case I end up needing

to rescue someone that I might find in the water.

(I have rescued people from the water on previous

occasions.). See Fig. 9.

Next consider a paddleboard, propelled by human

power, at first with full-size paddles, e.g. a standup

paddleboard (SUP). It can be paddled, or it can be
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Fig. 8: The Towboat™ or Rowfloat™ , a version of

towfloat that is a boat.

Fig. 9: I’m not swimming, I’m just towing my ves-

sel (with its built-in pool) out into the lake. Safety

First! The Towboat/Rowfloat is equipped with two

lifejackets, two whistles, towropes, and communiations

and navigation equipment, wearable navigation system,

headup display for navigation, signalling, and other

safety equipment.

towed with a front-tether. For safety, it is beter to waist-

tether a paddleboard than to ankle-tether it, because in

an emergency it is easier to free one’s self from the

waist tether (e.g. entanglement in rapids). See Fig 10.

Fig. 10: I’m not swimming, I’m just towing my

stand-up paddleboard (SUP) out into the lake. For

safety there are personal floatation devices, emergency

food and water, camping supplies, signaling, commu-

nications equipment, lighting, and emergency light-

ing equipment aboard the vessel. The board itself is

brightly-colored and highly visible to match the bright

orange “high-viz” swimcap. There are also paddles

aboard the vessel.

Next, consider a paddleboard that uses hand-paddles.

Hand-paddles were invented by Benjamin Franklin at

the age of 11, for swimming in Boston’s Charles River.

They are often used by swimmers for developing arm

strength.

Next, consider a paddleboard propelled by some-

one without paddles at all, e.g. just hand-paddling

with bare hands. Paddleboarding with bare hands (i.e.

without a paddle) is known as “prone paddleboarding”

or “traditional paddleboarding” in contrast to modern

(stand-up) paddleboarding. Traditional paddleboarding

is pictured in the 1781 engraving by ship artist John

Webber who accompanied Captain James Cook to the

Sandwich Islands in 1778. See the excerpt of the

engraving showing a surf-style of paddling with a

paddleboard in the foreground of Fig. 11.

Next might come a smaller and smaller paddleboard,

surf rescue board, surfboard, or the like. Some surf-

boards are inflatable such as shown in Fig 12, and

although one can’t stand on such a surfboard very

effectively, it is excellent for practicing of paddling

skills that are important to surfing. It folds up into

a small pocket-sized package that weighs less than 1

pound (less than 1/2kg).

As we continue to shrink the Ship of Kolympi,

we might perhaps eventually end up with a small

kickboard, propelled in much the same way as the

Bodyglove Crusader prototype, by kicking. Surfing

shortboards about 6 feet (about 2m) long are common,

as are bodyboards about 3 feet (about 1m) long. Such

vessels facilitate strokes very similar to swimming, e.g.

paddling “freestyle” or paddling “butterfly” or paddling

“breaststroke”. See for example Fig. 13

WEARABOAT™

Consider now a wearable paddleboard, even smaller,

like perhaps 1 foot long (about 30cm long). See Fig 14.

The experience is like paddling on a surfboard that one

can never “wipe out” from.

NECKBOAT

Whereas yachts are usually measured in feet, going

smaller, we might want to start measuring vessels in
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Fig. 11: Indigenous Polynesian paddleboarding in the 1700s (traditional paddleboarding with no paddle) visible

in the foreground near the bottom of the picture.

Fig. 12: Paddleboarding on a pocket-sized inflatable

surfboard that weighs less than 1 pound (less than 1kg).

inches, such as the 4-inch (approx. 10cm) vessel of

Fig 15. Eventually we come to realize the legal fiction

of a “NO SWIMMING” sign.

We often do crossings from downtown Toronto

(mainland) to the Toronto Island. For safety, we always

go in large groups, accompanied by large vessels

moving slowly with us.

Interestingly, one of our members of SwimOP.com

(Swim at Ontario Place) joined a group of us to do a

crossing from Ontario Place East Island to the Toronto

Islands, landing on Hanlan’s beach at Centre Island

wearing a Neckboat. During the crossing he wore the

Neckboat pictured in Fig. 16.

Interestingly he lost this vessel (it came loose from

the string around his neck) on his return trip. As he

did not become aware of losing the vessel until landing

back on East Island, he must have been swimming

for the portion of the trip during which the vessel

came loose from his neck. In this way he may have

unknowingly broken the NO SWIMMING rule. How-

ever, because he started at Hanlan’s beach which is

Fig. 13: Not swimming, just paddleboarding. A short

styrofoam bodyboard approx. 3 feet (approx. 1m)

long is perhaps a minimum viable vessel (minimum

allowable cyborg prosthesis) that one must posess to

be allowed to enter the water.

a designated swimming beach, where swimming is

allowed, one could argue that he wasn’t in violation

of the rule, as there appears to be no specification as

to how far one can stray from a designated swimming

spot before being considered to be no longer at that

beach.
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Fig. 14: “Wearaboat™” (wearable boat) is a miniature

paddleboard, attached to the body so it doesn’t fall off.

A CONTINUUM OF SMALLER AND SMALLER

VESSELS

The laws regarding swimming fail to define what

is meant by “vessel”, leaving us to wonder just how

much cyborg technology one must “wear” in order

to be allowed access to the water, e.g. especially for

those without means or time to travel to a place where

swimming is allowed, or those with disabilities who

have no choice but to swim where they can access the

water.

We seek not so much to answer all these questions

but simply to raise questions. As James Baldwin once

said “the purpose of art is to lay bare the questions

that have been hidden by the answers”.

Consider a continuum of smaller and smaller vessels

(Fig. 17). At what point is one committing the crime

of swimming as one chooses vessels of less and less

encumberance?

MICROYACHTS, NANOYACHTS... YOKTOYACHT™

The concepts of microyachts and nanoyachts have

been introduced. Now I introduce the YoktoYacht,

which might be defined as the smallest yacht for a

person to go “NOT SWIMMING”. Yokto is the metric

prefix of 10−24.

We might wish to adopt a sense of creative humour

in defining what might be a soft-boundary between

swimming and NOT SWIMMING, perhaps at the

edges of human visibility and eyesight.

I made a series of variously-sized “YoktoYachts”

(wooden boats) using a laser cutter/engraver, as shown

in Fig. 18

It was found that a 3/4 inch (approx. 19mm) long

boat was the smallest upon which legible text could be

written, using the available laser-engraving equipment,

to identify it as NOT SWIMMING. See Fig 19

Having spent more than a year at Stanford Uni-

versity, and studying some of the work done there,

I am presently exploring the use of a scanning tun-

neling microscope (STM) to arrange individual atoms

or molecules in a two-dimensional pattern to make

text identifying a very small vessel as “NOT SWIM-

MING”. I name this vessel the QuectoYacht™ , af-

ter the smallest metric prefix “quecto” which means

10−30.

Unfortunately, for the swimmer, this might require

that Marine Police equip themselves with a scanning

electron microscope to read the indicia on the yacht, so

that they can determine whether a person is guilty of

swimming, or is merely boating (e.g. paddleboarding).

YOKTOYACHT MEME

As a form of outreach, we ran a series of boatbuild-

ing workshops and engaged members of the commu-

nity, as well as other members of our research teams

to make boats as well as to personalize them as works

of art (Fig. 20).

SAFELY CONNECTING TO NATURE

An official might be tempted to pick a point along

the continuum in which the boater can stay dry as being

a defining boundary of what one might think of as a

real vessel. However, another question we can address

is how to make an extremely safe vessel that also

allows the boater to completely connect with the water.

If outriggers are added to a very small 12-inch (about

30cm) wide paddleboard, it becomes stable enough to

support one or more tall masts (Fig. 21). The vessel

has a visibility mast that can be seen by other vessels

and can also house a computer vision system, camera,

radar, and navigation system with antenna, etc., feeding

into a VR (Virtual Reality) or XR (eXtended Reality)

headset.

This vessel can also accommodate illuminated

masts, 10 feet (appprox. 3m) tall one on the starboard

pontoon, and another on the port pontoon, for visibility,

and can support three full-size flags one flying from

each mast, so that the vessel can be clearly seen by

other vessels from at least a mile or so (approx. 1.6km)

away. An example flag mast is shown in Fig 22.

At the same time, the captain of this ship can

do freestyle, butterfly, breaststroke, and backstroke

paddling and remain completely in the water, soaking

wet, and even see underwater with an underwater

VR / XR headset connected to the onboard sonar

system for navigation that works above and below the

water, combining radar, sonar, and computer vision for

maximum safety and navigational capability.

CONCLUSION: SAFETY AS A HUMAN-RIGHT

In summary, safety is a basic human right, as is safe

access to safe water. We call upon all authorities to pri-

oritize safe water accessibility and to ensure that water

remains safe for everyone, not just those in big boats.
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Fig. 15: “Neckboat™”, a necklace-based vessel... perhaps a good-luck charm for protection from the Marine

Police.

Fig. 16: Neckboat worn by one of the members of a

group of people crossing from Ontario Place East Is-

land to the Toronto Islands, pictured here after landing

on Hanlan’s beach at Centre Island.

We envision a place we call “Mobase” as a base-of-

operations for mobility and accessibility in downtown

Toronto around Peter Street Basin (“Mobasin”), HTO

Urban Beach, and Harbourfront Canoe and Kayak

Centre. And we also call upon ourselves and each

other to engage in Safetymaking™, to make the world

safer, especially when and where our authorities can’t

Fig. 17: Variously sized embodiments of the Ship of

Kolympi randing from 11feet (approx. 3m) to 1 inch

(approx. 3cm).
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Fig. 18: Yoktoyachts™ lasercut/engraved in varying

sizes to determine the smallest size with legible text.

or won’t. For example, when the safety ladders began

to fall off the dock wall, as the nuts and bolts were

coming loose, we contacted all of the various author-

ities to request that they be repaired or maintained.

Over a period of many years, our calls were ignored

and the ladders began to deteriorate, and some were

lost as they fell off the wall and sank to the bottom

of the lake. As a result, we formed Safetymaking™

and purchased the necessary supplies to maintain

them (Fig. 23). Safetymaking is the community-driven

process of transforming dangerous public spaces into

safe accessible places that foster connection between

people and their environment for health and well-being.

This process begins through raising awareness and

contacting other organizations who might be able to

help. Safetymaking also builds trust and community-

connectedness, in finding solutions to make the com-

munity safer when larger, distant, or more bureaucratic

organizations can’t or won’t. Safetymaking follows

the concepts of placemaking when authors like Jane

Jacobs campaigned for cities to be more pedestrian-

friendly rather than only car or commerce-friendly. Her

idea of “eyes on the street” can be embodied through

the modern concept of safeguarding humanity through

sousveillance.

More generally, Safetymaking aims to balance

big boats, big data, and big-watching (surveillance)

with little boats (swimming or paddling), little data

(blockchain) and little-watching (sousveillance). We’re

all cyborgs in the Manfred Clynes sense of a person

riding a bicycle or a person riding on a vessel. But

Fig. 19: A boat approximately 3/4 of an inch (approx.

19mm) long was found to be the smallest boat upon

which clearly legible text could be written on the rough

wooden surface, using the available laser-engraving

equipment. We are presently exploring the use of a

scanning tuneling microscope to arrange individual

atoms on a metal surface to create the QuectoYacht™.
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Fig. 20: Community involvement in the YokoYacht

meme... boatbuilding as art.

we must never adopt technologies that become com-

pulsory or enslave us. We must balance the benefits of

technology with the right to, at least once in a while,

not use the technology. The right to swim is the right

to be a non-cyborg, even if only briefly.

The Swimboat™, Wearaboat™, Neckboat™,

“Swoating™”, Ship of Kolympi™, etc., were invented

by S. Mann in Canada, and also form what is

known as a Minimum Allowable Cyborg Technology

(MACT), Minimum Allowable Vessel (MAV) or

Minimum Viable Vessel (MVV); see Mann, Steve. ”...

Fig. 21: Even a very narrow 12-inch (approx. 30cm)

wide paddleboard can be made stable enough to

support one or more tall masts, simply by adding

outriggers. Here two outriggers convert the miniature

paddleboard to a trimarin that can support up to 3 tall

masts for visibility and safety.

Liminal Spaces of Body, Ownership, and Control.”

In Humanity In-Between and Beyond, Monika

Michałowska, ed, pp. 141-152.: Springer International

Publishing, 2023 [19]. There is an inherent conflict-of-

interest that makes it profitable for governments and

corporations to pollute our lakes and rivers, creating

“denatured waters”, making it unsafe to swim, so

people need to use motorboats rather than risk falling

from a smaller vessel like a kayak or paddleboard,

and so that people need to buy bottled water to drink

rather than tap water from the lake. The MACT
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Fig. 22: Freestyle (front-crawl) “Swoating™ ” in police-infested waters. A Marine Police boat, visible in the

background, has just passed by and did not have issue with this activity. A highly visible flagpole also serves

as a lifejacket rack.

Fig. 23: Safetymaking™ involves first reaching out

and raising awareness, and then if that doesn’t work,

creating a community-driven process of transforming

dangerous public spaces into safe accessible places that

foster connection between people and their environ-

ment for health and well-being, not just for cars, com-

merce, and large gasoline-powered boats. Here a safety

ladder is being repaired after notifying authorities and

waiting many years to no avail.

is a first-step towards raising awareness about this

potential conflict-of-interest. Getting more people “in”

the water is the first step toward protecting our supply

of drinking water and the MACT/Kolympi can help

with this goal.

See also “The Ship of Theseus”, also known as

“Theseus’s Paradox”.

Notes: The ship’s name, Kolympi or Kolymvisis,

derives from the Greek word for ”swimming”, e.g.

no swimming; όχι κολύμπι; óchi kolýmpi swimming;

κολύμπι; kolýmpi the ship of swimming; το πλοίο της
κολύμβησης; to ploı́o tis kolýmvisis
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Abstract—This study investigates the neurophysiological effects
of cold water exposure by analyzing EEG data collected using a
MUSE headband. The research evaluates changes in brainwave
activity before, during, and after cold plunges, focusing on the
modulation of alpha, beta, delta, theta, and gamma bands. Results
demonstrate significant increases in alpha, beta, and gamma
activity, suggesting enhanced focus, relaxation, and cognitive
function following cold exposure. The study also explores the
implications for long-term brain health and cognitive resilience.
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I. INTRODUCTION

Cold water immersion, or cold plunging, has gained at-

tention for its potential physical and psychological benefits,

including reduced inflammation, improved circulation, and

enhanced mood [1]. Recent studies have begun to explore the

neurophysiological mechanisms underlying these effects, yet

few have quantitatively examined how cold water exposure

alters brain activity in real-time. With the rise of consumer-

accessible electroencephalography (EEG) technology, it is

now possible to investigate these effects through non-invasive

brainwave monitoring.

Brainwave activity can be categorized into several frequency

bands—delta, theta, alpha, beta, and gamma—each associated

with distinct cognitive and emotional states. For example,

alpha waves are commonly linked with relaxation and mental

clarity, while beta and gamma waves are associated with

alertness, focus, and high-level cognitive processing. Under-

standing how these brainwave patterns change in response to

cold exposure can offer new insights into the neural basis of

stress resilience, mood regulation, and cognitive enhancement.

This study utilizes the MUSE™ headband, a portable EEG

device, to track and analyze changes in brainwave activity

before, during, and after cold water immersion. The goal is to

determine how cold exposure modulates brain function both

acutely and over short-term recovery periods. By analyzing

EEG data across key brain regions and frequency bands, this

research contributes to a growing body of work aimed at

improving personal brain health and cognitive performance

through accessible, real-time neural monitoring.

II. BACKGROUND

The human brain operates through complex electrical ac-

tivity that can be measured non-invasively using electroen-

cephalography (EEG). EEG captures voltage fluctuations gen-

erated by neuronal activity and classifies them into distinct

frequency bands: delta (0–4 Hz), theta (4–8 Hz), alpha (8–12

Hz), beta (12–40 Hz), and gamma (above 40 Hz). Each of

these bands corresponds to different cognitive and physio-

logical states. Delta waves are associated with deep sleep

and restoration, theta with creativity and light sleep, alpha

with calm and relaxed alertness, beta with focused mental

activity, and gamma with high-level cognitive functions such

as perception, memory integration, and consciousness [2].

Recent interest has grown around using EEG to explore

how external environmental factors, such as temperature and

sensory stimulation, influence brain activity and overall cogni-

tive performance. One such factor is cold water immersion, a

practice used in athletic recovery and increasingly adopted in

wellness communities for its reported psychological benefits

[1]. Cold exposure activates the sympathetic nervous system

and triggers a stress response, but it is followed by parasym-

pathetic rebound, which can restore physiological balance and

promote mental clarity [3, 4].

Alpha waves, in particular, are considered a neural marker of

relaxation and readiness. A key metric used to evaluate alpha-

related brain function is Peak Alpha Frequency (PAF), which

represents the dominant oscillation within the alpha band. PAF

has been associated with cognitive performance, attention,

and mental well-being. Higher PAF values are correlated

with better working memory and faster information process-

ing, while lower PAF is linked with depression, attention-

deficit/hyperactivity disorder (ADHD), and cognitive decline

[5, 6].

In the context of cold exposure, changes in brainwave

dynamics, especially in the alpha, beta, and gamma ranges, can
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offer insight into the brain’s adaptive response to physiological

stress and recovery. Temporary decreases in PAF may occur

during cold-induced stress, followed by rebounds that enhance

cognitive and emotional states [6]. Long-term exposure has

been hypothesized to promote neuroplastic changes, contribut-

ing to improved emotional resilience and stress tolerance [7].

Consumer-grade EEG devices like the MUSE™ headband

have made it possible to monitor brain activity in real time

outside of traditional lab settings (Fig.1). Although these

systems don’t offer the same spatial resolution as clinical-

grade EEGs, they still deliver reliable temporal data that’s

well-suited for tracking broader patterns in brainwave activity.

Thanks to their portability and user-friendly design, tools

like the MUSE are well-suited for studying how everyday

interventions, such as cold plunging, can influence cognitive

and emotional states [9].

Fig. 1. MUSE S Headband used in the study

This study builds on existing research by quantifying the

neurophysiological impact of cold water immersion using

EEG, with the aim of understanding how brainwave activity

is altered in the moments and hours following a plunge. By

investigating these effects across different frequency bands and

brain regions, the research contributes to a deeper understand-

ing of how environmental stimuli influence cognitive health

and brain function.

III. METHODS

This section outlines the experimental setup, EEG data

acquisition using the MUSE™ headband, and the full signal

processing pipeline used to analyze brainwave activity in

response to cold water immersion. The study also includes

a control task (medium-level Sudoku) to establish a cognitive

baseline, allowing comparative analysis of brainwave activity

before, during, and after cold exposure.

A. EEG Acquisition System

EEG data was collected using the MUSE™ 2 headband,

a consumer-grade, portable electroencephalography (EEG)

device designed for real-time monitoring of brain activity.

The MUSE system includes four dry electrodes positioned at

AF7, AF8, TP9, and TP10, corresponding to prefrontal and

temporal-parietal regions. These locations are associated with

emotional processing, sensory integration, cognitive attention,

and relaxation [2].

To facilitate wireless data streaming from the MUSE to a

computer, we used Open Sound Control (OSC) in conjunction

with an ESP32 microcontroller, programmed to receive data

via Wi-Fi and forward it through a serial port to CoolTerm,

a terminal application for logging real-time sensor data. Data

was stored as a plain text file containing raw data readings

across all four EEG channels.

B. Experimental Protocol

Participants were instructed to undergo a cold plunge in

three phases:

1) Before Cold Exposure: Participants completed a 5-

minute baseline recording while solving a medium-level

Sudoku puzzle to simulate a focused cognitive state.

2) During Cold Exposure: EEG data was recorded as

participants immersed themselves in cold water (5◦C)

for 10 minutes (Fig. 2) (Fig. 3) (Fig. 4).

3) After Cold Exposure: EEG was recorded again imme-

diately after and three hours later, allowing analysis

of both short-term and sustained neurophysiological

effects.

Fig. 2. Temperature of water with thermometer reading

C. Signal Processing Pipeline

EEG data collected from the MUSE headband underwent

a structured signal processing workflow to extract meaningful

frequency-domain features. The key stages of the pipeline are

as follows:

1) Data Preprocessing:

• Raw EEG data (a 4-channel time series in .txt format)

was loaded into a Python environment.

• Invalid or corrupt rows were removed.

• Data was converted into a 32-bit floating-point NumPy

array for numerical stability and precision.
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Fig. 3. Subject 1 partaking in cold plunge

Fig. 4. Subject 2 partaking in cold plunge

2) Bandpass Filtering: A Butterworth bandpass filter (5th

order) was applied to limit the frequency range from 0.5

Hz to 50 Hz. The filtering was implemented in zero-phase

mode using scipy.signal.filtfilt to preserve tem-

poral alignment and avoid phase distortion.
3) Sliding Window Segmentation: The filtered signal was

segmented using 5-second windows with a 2-second overlap

to balance temporal resolution and frequency stability.
4) Power Spectral Density (PSD) Estimation: Two methods

were used for estimating PSD:

• Fast Fourier Transform (FFT): Converted time-domain

segments into frequency-domain spectra.

• Multitaper Method: Applied multiple tapers to each seg-

ment before FFT to reduce spectral leakage. Implemented

via psd_array_multitaper from the MNE-Python

library, this method averages power estimates across

tapers for a more robust PSD.

5) Bandpower Extraction: Power was integrated across

standard EEG frequency bands:

• Delta (0.5–4 Hz): Deep sleep and recovery

• Theta (4–8 Hz): Memory, creativity

• Alpha (8–13 Hz): Relaxation, focus

• Beta (13–30 Hz): Alertness, cognition

• Gamma (30–50 Hz): Learning, perception

6) Logarithmic Transformation: To improve comparability

across participants and conditions, power values were con-

verted to decibels (dB) using the formula:

PowerdB = 10 · log
10
(Bandpower)

7) Output and Visualization:

• A .csv file was generated with columns representing

sample number and bandpower (in dB) per channel and

per frequency band.

• Line plots and bar charts were created to visualize trends

in bandpower over time and across different cold plunge

phases.

• Comparative plots were generated to assess changes

relative to the Sudoku control baseline.

This methodology enabled the extraction of reliable and

interpretable neural biomarkers for assessing the cognitive

impact of cold exposure. The combination of wearable EEG

hardware, microcontroller-based streaming, and signal pro-

cessing techniques provided the overall system for conducting

this neurophysiological experiment.

IV. RESULTS

The plots shown in Fig. 5 and Fig. 6 demonstrate the

processed EEG data from two subjects for before, during, and

after the cold plunge.

Fig. 5. Brain wave data from Despina’s cold plunge. The left black vertical
line shows the entry into the bathtub and the right one shows exit time from
the bathtub

A. Cold-Water Immersion

During the cold-water immersion, all EEG frequency bands

exhibited an initial spike in power followed by a gradual

decrease, indicating an immediate neural response to the

thermal stress.

B. Post-Exposure Observations

After the subjects exited the cold environment, a sustained

increase in EEG band power was observed relative to their

resting state, suggesting a rebound or recovery effect.
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Fig. 6. Brain wave data from Christina’s cold plunge. The left black vertical
line shows the entry into the bathtub and the right one shows exit time from
the bathtub

C. Meditation Session Outcomes

A 3.5-minute meditation session was conducted for a subject

at around 3:00 pm on a day when no cold water immersion

occured (Fig. 7) and on another day at around the same time

for the same subject 3 hours after the cold-water exposure

(Fig. 8). The analysis revealed:

• Beta and Gamma Bands: Significantly heightened power

readings.

• Alpha, Delta, and Theta Bands: Slightly elevated power

readings.

The data shows that cold-water immersion triggers a sharp,

immediate increase in EEG band power, which gradually

tapers off as the exposure continues. After the plunge, brain-

wave activity remained elevated across all frequency bands

compared to the initial resting state. Interestingly, a follow-up

meditation session appeared to amplify this effect, especially

in the beta and gamma ranges. These patterns offer a clearer

picture of how the brain responds to and recovers from short-

term thermal stress.

V. DISCUSSION

This study examined the neurophysiological effects of cold

water immersion on brainwave activity using EEG data col-

lected from multiple participants. The key findings support

the hypothesis that cold plunging modulates brain function in

measurable ways across several EEG frequency bands, with

especially notable changes in the alpha, beta, and gamma

ranges. These changes were most evident immediately after

cold exposure and continued for hours afterward, indicating

both acute and sustained cognitive and physiological effects.

A. Alpha, Beta, and Gamma Activity After Cold Exposure

Following cold immersion, participants exhibited an imme-

diate and consistent increase in alpha band activity, which is

commonly associated with relaxed alertness, mental calm, and

focused attention. This rise in alpha power suggests that cold

plunging may initiate a parasympathetic rebound following

the initial stress response, allowing the brain to shift into a

restorative state [5].

Fig. 7. Brain wave data from meditation without doing a cold plunge. All
bands show a baseline value

Fig. 8. Brain wave data from meditation without doing a cold plunge. All
bands show an elevated result compared to the baseline without the cold
plunge

Simultaneously, beta and gamma band activity, linked to

active cognitive processing and sensory integration, increased

after the cold plunge and remained elevated in recordings taken

three hours later. These increases imply enhanced mental clar-

ity, attention, and perhaps an improved readiness for learning

and task engagement.

B. Peak Alpha Frequency (PAF) as a Neural Biomarker

A particularly insightful metric in this study is the analysis

of PAF, defined as the specific frequency within the alpha band

(typically 8–13 Hz) that exhibits the maximum power. PAF

is a well-established biomarker for cognitive performance,

emotional state, and neurological health [6].
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During cold exposure, participants exhibited a transient drop

in PAF, likely due to sympathetic nervous system activa-

tion and stress. However, in the post-immersion recordings,

PAF values rebounded and, in some individuals, exceeded

baseline levels by 0.5–1.5 Hz. This rebound may reflect in-

creased parasympathetic activity, enhanced neuroplasticity, or

improved cortical synchronization, all of which are associated

with better attention, memory, and mood regulation.

C. Age and Peak Alpha Frequency Trends

PAF is known to decline with age, typically peaking during

adolescence and young adulthood, followed by a gradual

decline in older adults. Fig. 9 shows a clear inverse correlation

between participant age and baseline PAF, consistent with

existing literature [5].

Fig. 9. Peak Alpha Frequency (PAF) vs. Participant Age. A general decline
in baseline PAF with increasing age is observed. Post-plunge recovery was
more pronounced in younger individuals.

D. Control Task Comparison: Sudoku vs. Cold Exposure

The inclusion of a medium-difficulty Sudoku puzzle as a

control task allowed us to compare the EEG effects of mental

engagement versus physiological stress and recovery. While

Sudoku elicited modest increases in beta activity (consistent

with task-related concentration), it did not significantly af-

fect alpha or gamma bands. In contrast, cold plunging had

a more holistic effect across multiple bands, suggesting a

unique neurophysiological signature that combines relaxation

with heightened awareness, something not typically achieved

through cognitive tasks alone.

E. Implications

These results open several promising avenues for future

research. First, cold exposure may serve as a low-cost, ac-

cessible method for enhancing cognitive readiness and stress

resilience. Second, PAF could be used as a dynamic biomarker

to assess and track individual responses to cold therapy or

other wellness interventions over time.

VI. FUTURE WORK

In the next phase of our research, we aim to integrate

advanced machine learning techniques to improve the accuracy

and interpretability of EEG signal analysis. A promising

direction involves the use of convolutional neural networks

(CNNs), which are particularly effective at identifying spatial

and temporal patterns in time-series data such as EEG record-

ings. By transforming raw EEG signals into spectrograms

or other time-frequency representations (Fig. 10), CNNs can

autonomously learn discriminative features associated with

cold-water immersion and its cognitive or physiological ef-

fects. This approach has the potential to outperform traditional

statistical methods in classifying or predicting brain states.

We also plan to investigate recurrent neural networks

(RNNs)—with a focus on Long Short-Term Memory (LSTM)

architectures—to capture temporal dependencies in EEG data.

LSTMs are well-suited for modeling sequences and may help

uncover how brain-wave dynamics evolve before, during, and

after cold-water exposure. With properly labeled datasets, an

LSTM model could detect subtle transitions in neural activity

and enable real-time feedback for interventions or wellness

applications.

Another crucial component of our future work is enhancing

data quality through artifact removal and data augmentation.

We intend to implement preprocessing pipelines using tech-

niques like Independent Component Analysis (ICA) to filter

out non-neural signals (e.g., muscle movements or eye blinks),

ensuring that only clean data is used for model training.

Additionally, we aim to incorporate transfer learning strategies,

allowing us to leverage existing EEG datasets from similar

domains and mitigate limitations posed by small sample sizes.

Fig. 10. Spectrogram of EEG simulation data
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Abstract—The Muse S Athena is a low-cost, portable EEG
(ElectroEncephaloGraphy), PPG(PhotoPlethysomoGraphy), &
fNIRS (fuctional Near Infrared Spectroscopy) consumer device
released in 2025. Related earlier models of Muse hardware have
used in research settings. The goal of this study is to evaluate and
demonstrate the effectiveness of a mobile application in recording
EEG & fNIRS data from the human brain directly to a .csv file,
with the goal of facilitating further research into brain biometrics
in situations where traditional equipment may be out of reach
or impractical to use.

I. INTRODUCTION

Fig. 1: Muse Croc Logo

MuseCroc Mobile is an application intended to provide

easy, free access to biometric data in the form of EEG

(ElectroEncephaloGram), PPG (PhotoPlethysomoGraphy, and

fNIRS (functional Near InfraRed Spectroscopy) data collected

by the Muse headbands. MuseCroc Mobile is written in Java

for Android, and uses the Muse SDK (Software Development

Kit) to facilitate headband connection. The program consists

of a foreground service, which wraps the Muse SDK to

automatically handle headband connection and settings and

is intended to allow re-use of program code in new projects,

as well as a UI that interacts with the service to allow users to

connect to Muse headbands, collect, export, and store data, and

view real-time connection quality, brain activity, and artifacts.

Fig. 2: Avg Relative Frequency Values

II. BACKGROUND

A. EEG - ElectroEncephaloGraphy & The Muse Headband

EEG (ElectroEncephaloGraphy) is a technology used for

measuring electrical activity originating in the human brain,

with its first use recorded over a hundred years ago [1]. EEG

is a common and safe method of observing the activity of the

human brain, with application in the treatment and research

of various health conditions including seizures, tumors, brain

injury, sleep disorders, Alzheimer’s, and other neurological

disorders [2].

The Muse is a commercially available EEG headset, used

for both wellness and research purposes. Some examples of

research conducted with the Muse EEG include assessment of

well being indicators [3], sleep studies [4], Event Related Po-

tentials (ERP) research [5], and assessment of the effectiveness

of Muse-Assisted mindfulness training [6].

Additionally, the low cost, ease of use, and accessibility of

the Muse hardware has resulted in its use as a tool for large

scale EEG experiments, including those on audiences [7] and it

has been validated as a low-cost, mobile method of assessment

of cognitive fatigue [8].
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The Muse devices can collect EEG data from the electrodes

TP9, AF7, AF8, and TP10 [9]. As found during the develop-

ment of the MuseCroc Mobile, the Muse can output EEG data

in the form of Raw EEG in µV, Relative Frequency values as

proportion of total EEG signal, or Absolute Frequency values

in µV.

B. Functional Near Infrared Spectroscopy (fNIRS)

The Muse S Athena is the latest Muse headband offering

from Interaxon, released in 2025. One of the biggest im-

provements offered by the Athena is the new functional near-

infrared spectroscopy (fNIRS) system.

fNIRS is a technology used to measure Hemoglobin and

Deoxyhemoglobin in the human brain, with examples of its

use including assessment of task-related cortical function and

monitoring of cerebral oxygenation in neonatal ICUs [10].

fNIRS systems operate by measuring the absorption of relevant

wavelengths of light, allowing operators to measure blood flow

and hemoglobin species in the brain [10].

The Muse S Athena is a recently released device that allows

for EEG, PPG, and fNIRS Data collection. The Muse S Athena

is a compact headband that can be worn while sleeping or

engaging in activities. This allows for a plethora of exciting

new research opportunities - low-cost, location-independent,

and accessible fNIRS in addition to EEG for research in

diverse environments and settings.

C. PPG - Heart Rate Tracking

PhotoPlethysomoGraphy, or PPG, is a low-cost & non-

invasive method of measuring blood volume changes in the

microvascular bed of tissue that is commonly used to evaluate

the function of the cardiovascular system, including heart rate

[11]. Multiple models of Muse headset contain PPG sensors,

and collecting this data allows for the evaluation of heart rate

over time.

D. Gyroscope and Accelerometer

In addition to EEG, PPG, & fNIRS, Muses are also capable

of collecting accelerometer and gyroscope data. This data has

been used in the physical tracking of participant’s movement

[9]. The ability to track movement and orientation alongside

EEG, PPG, and fNIRS data with a portable system can allow

for diverse potential research applications, many of which

could exist outside of typical lab or medical settings.

E. What is a ”MuseCroc”?

”MuseCroc” is a term coined at MannLab, Toronto, Canada,

and refers to a device or software that captures data broadcast

by a Muse device [9], [12]. There have been two previous

MuseCroc projects - the more recent being a ESP32-Based

device that can capture raw Muse data and write it to an SD

card [9], and an earlier ESP32-based device used to control

interactive devices with brain activity [12].

The intention of this project is to carry the spirit of the

MuseCroc to accessible software to allow for easy access

to Muse data. No source code from the first two projects is

present in this application, however the spirit and goal remain.

F. Motivation

Conventional EEG and fNIRS devices continue to be costly,

stationary, and limited to laboratory or clinical environments.

These limitations circumscribe the variety of populations and

contexts that can be investigated. Mobile and consumer-

class devices, by contrast, promise inexpensive, scalable, and

location-independent acquisition. The aspiration of MuseCroc

Mobile is thus not merely to be a proof of technical feasibility,

but to open up biosignal acquisition to students, independent

researchers, and small laboratories, allowing them to conduct

substantive neuroscientific inquiry without access to special-

ized infrastructure. This motivation is in accordance with

recent directions in mobile health, edge computing, and citizen

science, in which small, portable instruments are facilitating

greater inclusivity in scientific investigation.

III. METHODOLOGY

The primary goal of this development project is to create

an easy to use, portable, and freely distributable application

to support and streamline accessible research using Muse

headbands. The secondary goal is to create a reusable wrapper

for the Muse SDK in order to simplify SDK use and allow

for developers and researchers in MannLab and collaborating

organizations to create custom mobile applications for use in

research.

In order to support these goals, the architecture of the

program has been broadly divided into two parts - the Muse

Foreground Service, which interacts with the Muse SDK and

allows for easy portability between programs, and the main UI,

which exists as an easy to understand interface for observing

real-time muse data and file management.

The Muse Foreground Service handles the detection and

connection to Muse headbands, and contains buffers to hold

streamed data as well as file recording components that

manage the collection of streamed data to .csv files. The Muse

streams data via packets over BLE, and each time a packet is

received the relevant buffers are updated and written to the

.csv file. The foreground service has a much simpler interface

than the SDK as a whole, and contains methods and variables

that allow for automatic management of device settings and

data collection.

A. Program Use & Operation

The user interface of the program consists of four sections.

The first section contains a list of available Muse headbands,

and will display information about the currently connected

device if present. This section is visible in Figure 4.

The second section contains live visualization of EEG

electrode connection quality, as well as the average relative

frequency values across all electrodes. This section is intended

to allow for live assessment of EEG fit and data streaming

when a Muse is connected. This section is visible in Figure 5.

The third section contains a selection of data types that

can be collected and recorded by the Muse. The Muse Fore-

ground Service will automatically select ideal presets and

listeners on the Muse device based on desired data (EEG
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Fig. 3: Program Architecture

Raw, Absolute/Relative Frequencies, PPG/fNIRS, Accelerom-

eter/Gyroscope). Finally, the bottom of the program contains

the recording toggle, which allows the user to start and stop

recordings, and a menu to choose recorded files to export

from. It also contains a guide that can be exported to allow

for understanding of the data in the .csv file and program

operation. This section is visible in Figure 6.

The Final program is intended to be distributed as a .apk,

with source code re-used in MannLab in order to enable future

research and development.

IV. RESULTS

To demonstrate data collected with the Muse S Athena

and MuseCroc Mobile, I created a 30-Second recording of

Raw EEG, Relative Frequency values, and PPG/fNIRS data

collected with a Muse S Athena. The resulting .csv file was

exported and graphed to create the visualizations below.

A. Artifact Indication and Connection Quality

The Muse outputs live indications of Artifact detection

along each electrode, as well as ”HSI”, which is used to

represent the quality of the electrode connection as determined

by the Muse.

The graphs presented in Figure 7 represent the artifact

detection as indicated by the Muse device’s internal meth-

ods by electrode, with green regions signifying artifact-free

connection.

Observation of the graphs generated from our trial data tells

us that connections along TP9, AF7, and AF8 are considered

mostly artifact-free by this particular metric provided by the

Muse SDK, while TP10 seems to have a higher incidence

of disruptive artifacts during the test. This asymmetry is

consistent with the expected variability that occurs due to

electrode placement and contact pressure, highlighting the

importance of monitoring per electrode in mobile context.
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Fig. 4: Screenshot of Muse Information & Connection Control

Fig. 5: Screenshot of EEG Connection Quality & Relative

Frequencies

Fig. 6: Screenshot of Streaming Toggles & File Export Con-

trols

In addition to artifact detection, we can view the HSI status

by electrode as well. These values are generated by the Muse

and sent alongside EEG data, and are intended to serve as

an indicator of the quality of connection on the provided

electrodes. These values are explained in the SDK, with a

value of 1 meaning a good connection exists, 2 meaning a

poor connection exists, and 4 meaning no connection or a very

poor connection exists. The HSI values over our 30-second

experiment are visible in Figure 8.

These HSI and Artifact Detection values are the same as

what is displayed to the user in real-time using the horizontal

bar-shaped Connection Strength/Artifact Detection indicators

in the UI. Although researchers may wish to use different

methods to evaluate signal quality and artifact presence, these

metrics remain useful because of their simplicity and real-time

generation by the Muse.

B. Raw EEG

The next metric we will be displaying is the Raw EEG data

in microvolts, which is collected by the Muse along each of

the TP9, AF7, AF8, and TP10 electrodes. The graphs of these

values in uV over our 30 second experiment are visible in

Figure 9.

C. EEG Relative Frequencies

The Muse SDK allows for live output relative and absolute

band power of different frequency ranges. Much like Artifact

Indication and Connection Quality, researchers may wish to

use different methods to generate these values. However, these

packets provide an easy to use and simple to visualize source

of insight into brain activity. These values are created by the
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(a) TP9 Artifact Detection

(b) AF7 Artifact Detection

(c) AF8 Artifact Detection

(d) TP10 Artifact Detection

Fig. 7: Artifact detection across electrodes

Muse for each electrode, and here we show the average values

of relative frequency ranges by electrode in Figure 2.

D. Raw fNIRS & PPG Data

Aside from EEG, some Muse headsets are capable of

recording additional biometric data in the form of PPG/fNIRS.

Different models of Muse record this data using different

methods, with the latest and most advanced being the 16-

channel Optics of the Muse S Athena. Here, we graph the

4 of the raw optics data taken from the Muse S Athena in

our trial recording. These channels represent the 730nm light

measurements, which is a wavelength of infrared light that can

be used in fNIRS to analyze hemoglobin in the human brain

[10]. These graphs are visible in Figure 10.

(a) HSI values at TP9

(b) HSI values at AF7

(c) HSI values at AF8

(d) HSI values at TP10

Fig. 8: Headband connection quality across electrodes
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(a) Raw EEG at TP9

(b) Raw EEG at AF7

(c) Raw EEG at AF8

(d) Raw EEG at TP10

Fig. 9: Raw EEG signals across electrodes

(a) 730 nm Left Inner Channel

(b) 730 nm Left Outer Channel

(c) 730 nm Right Inner Channel

(d) 730 nm Right Outer Channel

Fig. 10: 730 nm Channel Responses Across Inner and Outer

Regions
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V. FURTHER RESEARCH

Advancement in EEG & fNIRS technology has brought us

to a point where research can be conducted using low-cost,

portable technology like the Muse headbands. The goal of this

project, much like previous MuseCroc projects developed at

MannLab, is to facilitate and encourage research in diverse set-

tings that may be unsuitable or impractical for traditional EEG

or fNIRS systems, in addition to creating easily distributable

systems to allow for higher quantities of research done by

more people.

VI. CONCLUSION

This study has demonstrated the feasibility of using the

Muse SDK and products developed using it in the collection

of data suitable for research into human biometric data using

EEG, fNIRS, and other data available from the Muse. The

system makes two main contributions: (1) a reusable wrapper

around the Muse SDK, reducing access costs for researchers

and developers wanting to create their own mobile biosignal

applications, and (2) a simple Android app providing real-time

visualization and data export into research-friendly formats.

The development of similar technology using core components

of the program can encourage the proliferation of brain-

computer-interface based research and experimentation using

easily accessible hardware.
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the purpose of obtaining data broadcast by a Muse device.

”MuseCroc” or ”MuseCrock” are thus terms considered trade-

marked by MannLab, and any individual who would like to use

it to represent their work or products must receive permission

from Steve Mann of MannLab to do so.

The application MuseCroc Mobile was developed by

Mitchell Seitz, with the assistance & support of those listed as

co-authors of this paper. Source code contains the Muse SDK,
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Abstract—Neuromatic is a wearable, multimodal interface that
leverages brainwave data and computer vision to provide intu-
itive, reliable actuation of smart devices. By fusing EEG signals
from the Muse S headband with real-time gesture recognition
via a wearable Pi Camera module, the system provides a closed-
loop control experience for users with mobility impairments. This
paper presents the hardware design, communication protocols,
and edge inference architecture used to implement Neuromatic.

I. INTRODUCTION

Innovations in industry for technology that automatically

interface with the population brings about the question of

user-friendliness and surveillance of non-user-controlled tech-

nology dominating our lives. Wearable technology such as

smart glasses, the Apple Vision Pro and smartwatches have

given us a solution to bridge this divide between technology

and society. In parallel, devices capable of reading brain-

waves, like the Muse EEG headset, have opened up new

possibilities in IoT by allowing cognitive input to influence

smart systems. By combining brainwave data with computer

vision techniques and wearable tech, users can experience an

Extended Reality (XR) environment—one where thought and

visual input collaborate to provide intuitive, conscious control

over surroundings. This project explores the development of

such a system, named Neuromatic.

II. BACKGROUND

One of the major challenges faced by individuals with mo-

bility limitations or impairments from disabilities is accessing

appliances and elements around their home. Everyday tasks

such as opening doors, cabinets, interacting with high places,

knobs and switches can become significant obstacles without

assistance. Even smart appliances that offer accessibility ser-

vices often do so by offering touch control or voice activation

solutions, which may not be suitable for all users.

Neuromatic functions with input from hand gesture data

collected from a wearable camera and the Muse EEG headset

in order to provide real-time decisions on actuation of ap-

pliances around the home. By combining gesture recognition

with cognitive confirmation, Neuromatic ensures that only

intentional actions trigger system responses. This dual-layer

approach enhances both accessibility and safety, empowering

users to interact with their surroundings in a seamless and

dignified way.

III. HARDWARE

The system integrates EEG, visual sensing, and local actu-

ation into a single wearable pipeline designed for real-time,

closed-loop interaction. The hardware is modular and opti-

mized for low-latency, event-triggered control across varied

compute platforms.

A. A. EEG Interface

It reads raw brainwave activity on four channels using the

Muse S EEG headband. It communicates via Bluetooth Low

Energy (BLE) to a local edge server on the actuator.

B. B. Visual Sensing and QR Localization

A Raspberry Pi Zero 2W with a Pi Camera v1.3 attached

is powered by a 3.7 V LiPo battery and housed in a PETG

3D-printed case clipped to the front of the Muse headset. This

module is activated on BLE proximity to a known actuator and

begins to look for QR codes, which are target device addresses

or MQTT topics. When a code is detected, the Pi streams video

to the provided server for gesture recognition and multimodal

fusion.

C. C. Multimodal Integration and Actuation Logic

The actuator node merges EEG and gesture input through a

digital ”AND” gate approach—actuation will only take place

if both modalities agree on intent. Server-side gesture recogni-

tion using MediaPipe Hands detects 21-point hand landmark

constellations and infer actions (pointing, gripping, etc.). EEG-

based intent confirmation prevents accidental activations from

casual gestures or noise.

D. E. Enclosure and Power Design

The enclosure design incorporates snap-fit mounting for

the internal components, a front aperture for the camera, and

ventilation slots for passive cooling. PETG was selected due

to its mechanical strength and resistance to UV. The case

includes a dedicated slot for a universal snap-fit clip that uses

a cantilever arm mechanism for secure attachment to head-

mounted equipment. This design enhances stability during

movement while allowing quick removal and replacement.
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Fig. 1. Front view of the PETG enclosure showing Pi Camera mount and
external fasteners.

Fig. 2. Rear view of the enclosure with removable snap-fit clip slot and USB
access port.

E. F. Edge Performance and Platform Variability

System performance varies by processing device. Tests

conducted on a MacBook Pro (M4 28GB model) showed

considerable variation in both average response time and

stability of the signal. Figure 2 graphs confidence values for

EEG and gesture detection across 50 trials, as well as response

time per trial.

F. G. Proposed Lightweight Edge Server Library

A modular edge server library is proposed to support future

scalability. The following features will be supported:

• BLE session detection

• EEGNet inference engine possibly

Fig. 3. Internal housing showing the Raspberry Pi Zero 2W mounted inside
the enclosure.

Fig. 4. Exploded and assembled views of the custom PETG enclosure,
showing the internal layout of the Pi Zero 2W, Pi Camera, and LiPo battery.

• Upgrade MUSE-LSL to work with the MUSE-S Athena

to combine FNIRS

• MQTT with TLS support integration

IV. COMMUNICATIONS

A. I. MQTT Protocol Integration

To enable reliable communication between the gesture

recognition system and the motor, we utilized the MQTT

(Message Queuing Telemetry Transport) protocol.

MQTT is a lightweight publish-subscribe messaging proto-

col ideal for low-bandwidth and low-power devices, making

it a suitable choice for this real-time embedded system. Both

OpenCV-based gesture detection and EEG blink classification

from the Muse headband act as publisher nodes. When a

specific gesture is recognized and a blink event is detected

in the EEG signal, a message is published to a topic handled

by a Mosquitto MQTT broker, which is either hosted locally

or accessible via a networked laptop.
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Fig. 5. Plots of EEG and gesture input confidence vs. response time over
50 trials on a MacBook Pro M4 (28GB). Confidence levels are high and
consistent, with response times being low (¡200ms) consistently, which reflects
the benefits of edge processing with high performance.

B. II. Motor Control by ESP32

The ESP32, acting as an MQTT subscriber, listens for spe-

cific messages from the Mosquitto broker. When a command

that matches the predefined ”activation condition” (i.e., a valid

gesture and blink combination) is received, the ESP32 trig-

gers the motor. This architecture creates a decoupled system

where the sensing and actuation modules communicate asyn-

chronously, improving responsiveness and system modularity.

Additionally, the MQTT protocol provides Quality of Service

(QoS) features that ensure message delivery integrity, which

is essential for safety-critical actuation events such as motor

control.

V. SOFTWARE ARCHITECTURE IMPLEMENTATION

The core vision of NEUROMATIC is to create a seamless

interaction flow where users can look at objects they wish to

interact with, think about desired actions or focus on those

objects, use hand gestures to execute control commands, and

receive feedback through both visual confirmation and device

actuation. This creates a natural interaction chain that mirrors

human cognitive processes - attention, intention, and physical

expression - while removing the barriers of traditional input

devices.

A. 2.1 System Overview

The NEUROMATIC software architecture follows a mod-

ular, layered approach with clear separation between data

acquisition, processing, integration, and communication com-

ponents:

layer in the architecture serves a specific purpose: hard-

ware connecting to physical devices, data acquisition inter-

facing with sensors, processing transforming raw data into

meaningful information, integration fusing data sources into

commands, and communication transmitting these commands

to output devices.

B. 2.2 Input Processing Modules

The system handles three distinct input modalities:

1) 2.2.1 EEG Signal Processing: The EEG processing

module handles brainwave data from Muse headsets. It begins

with filtering and preprocessing of raw EEG signals to remove

noise and artifacts. The cleaned data then undergoes feature

extraction using a temporal convolutional neural network

EEGNet, which has been specifically designed to identify

patterns in brain activity with minimal training data. This

PyTorch-based model classifies the brain states into discrete

categories that can be used for intent recognition.

2) 2.2.2 Gesture Recognition System: The gesture recog-

nition system uses a standard webcam or pi camera and

processes frames through the OpenCV and MediaPipe libraries

to extract hand landmarks. These landmarks are then fed into a

TensorFlow model that has been trained to recognize specific

gestures such as pointing, grabbing, or waving.

3) 2.2.3 Object Recognition and QR Detection: The object

recognition module currently focuses on QR code detection

as a method for identifying objects in the environment. The

system uses computer vision algorithms to scan the environ-

ment and detect QR codes, and decode their content. This

provides a way to uniquely identify smart devices. In future

iterations, this will expand to general object detection using

YOLO or similar algorithms to recognize everyday objects

without requiring special markers.

C. 2.3 Integration and Decision Making

The heart of the NEUROMATIC system is the integration

layer, which combines signals from all three input sources to

determine user intent. This fusion algorithm correlates brain

activity with visual focus and hand gestures to create an under-

standing of what the user wants to accomplish. For example,

brain activity indicating focus combined with looking at a

lamp and making a specific hand gesture might be interpreted

as the intent to turn the lamp on or off.

The integration is handled by a Flask-based backend that

processes incoming data streams and applies a set of config-

urable rules to determine when and how to activate connected

devices. This rule-based system allows for personalization

based on individual preferences and capabilities.
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D. 2.4 Dashboard and Control Interface

A web-based dashboard provides real-time visualization of

all system components and allows users to define custom

triggers and actions. Through this interface, users can:

• Monitor their EEG signals in real-time with visual feed-

back

• See recognized gestures as they perform them

• Define custom combinations of inputs that trigger specific

actions

• Configure new devices and control schemes

The dashboard is built with Flask and WebSocket to ensure

responsive feedback.

E. 2.5 Output and Device Control

The final stage is the communication layer, which transmits

commands to smart devices using the MQTT protocol. The

system is currently designed to control ESP32-based smart

home components but can be extended to any device that

supports MQTT or similar protocols.

VI. CONCLUSION

Neuromatic provides an interface between society and tech-

nology via human input and realizes XR (Extended Real-

ity) while providing a solution for individuals with mobil-

ity impairments. Neuromatic differs from traditional smart

systems which often automate tasks like opening doors or

controlling appliances, but which frequently lack user-centered

design—especially for those unable to use voice or touch in-

terfaces. By confirming deliberate intent through EEG signals,

Neuromatic enables users to intuitively and safely control their

environment via a blend of physical gestures and cognitive in-

put. Wearable technology such as Neuromatic responds to the

global culture of surveillance by a system of sous-veillance,

empowers users with greater independence, globalizes the use

of XR and provides a higher quality of life for many.

FUTURE WORK

Looking ahead, several key developments are planned to

enhance the capabilities and accessibility of the Neuromatic

system.

First, implementing a BLE (Bluetooth Low Energy) range-

to-actuator finder will enable the system to dynamically iden-

tify and connect to nearby smart devices, allowing for more

context-aware interactions within the home. BLE is already

a commonly used method for communication in wearable

technology and IoT systems, due to its low power consumption

and ability to maintain stable connections for short distances

(10-30 meters indoors). As such, we would like to scale the

design of Neuromatic to accommodate BLE.

Additionally, to encourage community-driven innovation

and wider traction/popularity, the Neuromatic software devel-

opment kit (SDK) and hardware housing designs will be open-

sourced, providing developers and makers with the tools to

customize and expand the system.

Finally, the reliability of the EEG data is dependent on

large-scale data collection. This will be prioritized to capture
a diverse range of EEG signals and gesture patterns, which

will help improve the inclusivity of the system. With more

data and further tuning of the machine learning models for

classification, the accuracy of gesture will be refined, ensuring

robust performance across various users and environments.
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Spinal Drift: Research on Dynamic Core Engagement Through Interactive

Gameplay

Jonathon Wang, Chahit Uppal, Nicholas Wood

Abstract— Spinal Drift is an interactive physiotherapy game
designed to promote core strength and spinal health through
engaging, sensor-driven gameplay. By transforming a tradi-
tional plank exercise into a competitive racing experience, the
game leverages the inertial measurement unit (IMU) sensors
in smartphones to track users’ core movements in real time.
Players control an on-screen vehicle by shifting their body while
in a planking position on a balance board, seamlessly integrat-
ing exercise with immersive gameplay. The system features a
React Native mobile app for motion tracking, WebSocket com-
munication for low-latency data transfer, and a browser-based
3D game environment powered by Three.js. Preliminary user
testing showed high engagement, rapid adaptation to controls,
and positive feedback, with many participants unaware they
were exercising due to the fun, competitive design. Future de-
velopments include multiplayer modes, adaptive difficulty, and
clinical validation in partnership with healthcare professionals.
Spinal Drift demonstrates the potential of gamified rehabilita-
tion tools to transform physiotherapy into an accessible and
enjoyable experience.

I. INTRODUCTION & BACKGROUND

Physiotherapy has come a long way in recent years,

especially with the rise of interactive and gamified tools

designed to make exercising more engaging. Spinal Drift was

created right at this crossroads of health tech and gaming,

offering a fresh take on spinal and core health.

The spine plays a vital role in our posture, movement, and

daily activities. When core muscles are weak, it can lead to

bad posture, back pain, or even injuries. While exercises like

planks are great for building core strength, they are often not

fun and exciting. That’s where Spinal Drift steps in. Using

the motion sensors (gyroscope) built into smartphones, it

turns a simple core workout into a fun, interactive racing

game. Players get into a plank position on a balance board

and steer the game with subtle shifts in their core.

By merging motion-tracking tech with physiotherapy,

Spinal Drift makes working out feel less like a chore

and more of a challenge to overcome through competitive

gameplay elements. It encourages players to stay engaged

and build their core strength, all while having a little fun

along the way.

II. GAMEPLAY

In the Spinal Drift game, the player controls a vehicle

facilitated by an inertial measurement unit (IMU) sensor

integrated with their phone. The car has three controls: left

and right for respective tilting directions and the ability to

slow down through forward and backward tilting. Utilizing

the balance board to place the phone (see Figure 1), the

player will enter a planking position and shift their core

based on how they want to steer the vehicle. The core concept

is combining physiotherapy exercises such as planking to

encourage spinal health through strengthening the core via

an engaging interactive racing game.

Fig. 1. Balancing board with IMU phone app used for game controls

A. User Menu Settings

Before beginning the game, the user is prompted with a

menu interface for various settings and information that they

can choose to read (see Figure 2).

Fig. 2. Spinal Drift user menu interface

The primary setting that the player must have before

beginning the game is calibrating their IMU ID. This ID

is determined by the IMU app used as the controller of

the game, in which both tags must share the same name to

establish a connection after clicking on the “Connect” button

(see Figure 3).
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Fig. 3. Verify matching IMU ID before connecting

Due to Spinal Drift’s endless runner gameplay, the game

is only over after the time limit has run out. The time limit

is determined by the game duration set by the player based

on their exercise comfort level (see Figure 4). If no time

is selected, the game will run at a default duration of 30

seconds.

Fig. 4. Drop-down menu for player selection of game duration

For new players unsure of specific game mechanics, a user

summary is provided by clicking the “How to Play” button.

This allows for new players to learn the game through brief

informative instructions (see Figure 5).

Fig. 5. Gameplay information pop-out window for new users to read

The last setting on the menu is the customization feature

that allows the player to choose the color of their vehicle

based on their preference (see Figure 6). If no color is

selected, the game will load with the default blue color

setting. When all changes are set by the user, the player

can click the “Start Game” button to load Spinal Drift and

begin the game.

Fig. 6. Customizable user color settings of game vehicle

B. Road Conditions

Three main driving conditions will be cycled during the

duration of the game, each offering a unique set of exercise

challenges that the player will face, listed as follows: traffic

roads, construction zones, and curved roads. The traffic road

condition is the most common driving environment that the

user will come across, which trains the player’s reactive

movement during the exercise. During traffic, the car must try

to quickly dodge the opposing vehicles parked on the road by

dodging either left or right (see Figure 7). The player will get

point deductions based on the challenges they fail during this

segment. If the vehicle hits any cars when driving, the player

will be penalized with a “-2” point deduction (see Figure 8).

Additionally, if the player swerves to the left or right and

reaches the borders of the road, they will experience a “-1”

point deduction (see Figure 8).

Fig. 7. Traffic Road Environment Condition

Fig. 8. Traffic Road Environment Condition
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To ensure stability and balance during the exercise, the

construction zone conditions encourage users to stay aligned

with the road. In this segment, the player is awarded for

little to no movement, ensuring the car does not veer off the

road. When the vehicle is continuously driving on the road

without drifting off, the game awards “+2” points as long

as the user stays in the center (see Figure 9). However, the

zone also penalizes the player depending on how off-center

the car is. Four unsafe regions within this zone deducts “-1”,

“-2”, “-3”, and “-4” points, respectively (see Figure 10). In

addition to the penalty points, the speed of the vehicle also

decreases, making it drive slower as it moves further and

further off-road.

Fig. 9. Construction zone environmental condition with points awarded
for alignment

Fig. 10. Penalty for veering off-road based on drift severity from center

The last road condition that the user will experience is a

winding road that focuses on gradual, sustained tilts for line

tracking. This road environment intends to train the user with

steady movement coordination during the exercise with an

award system based on how well the player stays in the

middle. The gold coin spawns in the middle of the road,

which provides “+3” points if collected (see Figure 11). If the

car is not aligned with the middle of the track, the player can

still obtain silver coins that reward “+2” points and copper

coins that give only “+1” points (see Figure 12). To penalize

severe failing of coordination, there will be points deducted

if the car touches the borders of the curved road that will

“-2” points from the player (see Figure 13).

Fig. 11. Curving road condition with points awarded for accurate line
tracking

Fig. 12. Less points awarded for inaccurate line tracking with center of
winding road

Fig. 13. Border penalty for coordination failure

III. HIGH-LEVEL DESIGN

Fig. 14. Border penalty for coordination failure

Spinal Drift is built around three main pillars: hands-on

user interaction, core-driven motion control, and gradually

increasing difficulty through changing terrain. At the heart

of it all are the smartphone’s IMU sensors, which pick up

on how the phone tilts and moves.

Everything kicks off with a simple, intuitive menu. Here,

users can tweak how their vehicle looks and choose how

PROCEEDINGS OF THE 27th ANNUAL MERSIVITY/WATERHCI SYMPOSIUM, Jun20-Aug25 39



long they want to play. Once the game starts, players dive

into timed challenges that change based on the “road” they’re

driving on. The IMU tracks body movements in real time,

letting players control the vehicle by shifting their weight,

like steering with your core.

The game features three environments that switch on the

fly: busy traffic streets, tricky construction areas, and curvy

mountain roads. Each one is designed to work different

parts of your core and test things like posture, balance,

and reaction speed. There are rewards for good control and

penalties for poor form, all built into the gameplay to keep

players focused and motivated.

A lot of what makes Spinal Drift work comes down to fast,

accurate data processing. The motion data is sent through

a local connection and interpreted by the game’s physics

engine, which reacts instantly to the player’s movements.

That way, what you do physically matches exactly what you

see on screen. This helps build a stronger connection between

body control and performance.

IV. TECHNICAL RESEARCH

The core of this system is a cross-platform mobile app

built with React Native and the Expo framework. This combo

was chosen because it’s quick to develop and works smoothly

across both iOS and Android devices. The app taps into the

phone’s gyroscope and accelerometer to continuously track

movement, specifically along the pitch, roll, and yaw axes.

That motion data gets bundled into neatly structured JSON

packets at around 60 times per second, ensuring a steady

stream of information. It’s then sent through WebSockets,

a communication method chosen for its low latency and

ability to keep a constant connection open between the phone

and the server. This setup helps ensure that every slight

movement the user makes is captured and reflected in the

game almost instantly.

On the other end, the server listens for incoming Web-

Socket messages and interprets them as in-game controls.

These inputs are fed into a 3D simulation powered by

Three.js that runs in the browser and handles all the visual

rendering. Three.js allows Spinal Drift to create detailed

environments, simulate realistic vehicle dynamics, and keep

the game responsive on a variety of devices.

The steps in our technical design are as follows:

1) Sensor Capture (React Native App)

• Uses Expo’s DeviceMotion and Gyroscope APIs

• Collects orientation data at ∼60 frames per second

• Smooths the data with a moving average filter to

reduce noise

2) Data Transmission (WebSocket)

• Sends the motion data through a persistent Web-

Socket connection

• Includes keep-alive signals to keep the connection

stable

3) Game Engine (Three.js)

• Maps the motion data to control how the vehicle

moves

• Adjusts things like speed, turning, and braking

based on tilt

• Renders road types like traffic zones, construction

sites, and winding paths

• Handles physics, collisions, and the points system

in real time

The system was also designed to be flexible. Developers

can tweak things like tilt sensitivity and response thresholds,

which makes it easier to add future features like adaptive

difficulty or personalized workout modes. All of this adds

up to a smooth, immersive gameplay experience with plenty

of room to grow.

V. FUTURE IMPROVEMENTS

To further refine the user experience in making it both

more interactive and therapeutic, the team has begun looking

into advancements for Spinal Drift. These include optimizing

the sensor technology of the IMU, which will allow for more

accurate monitoring of posture and core engagement. One

method to do this is through including adaptive calibration

systems that will allow the user to tune the sensitivity

of the tilt controls that best suit their exercise levels and

offer personalized difficulty settings. Furthermore, in terms

of gameplay, the team has discussed the implementation

of multiplayer functionality that will increase engagement

through friendly competition. These planned changes will

add in a global and local leaderboard that can be used to

boost engagement in the game by achieving the highest score.

Another multiplayer option includes allowing two players to

drive on the same map and interact with one another through

power-up items that can decrease the opposing player’s score

or be used to increase their score.

Once the game has been fully optimized based on the

changes, the team plans to seek professional research with

healthcare professionals who can help integrate the game

clinically through systems and physiotherapy protocols that

ensure the gameplay contributes effectively to spinal health.

Through incorporating gameplay changes with the addition

of professional research, Spinal Drift can be finalized to

be a robust, interactive platform that facilitates long-term

rehabilitation along with core strengthening.

VI. CONCLUSION & FINAL RESULTS

The final showcase of Spinal Drift at the symposium

was a major success, both technically and in terms of user

engagement. One of the clearest signs that the project struck

a chord was how many people came back for second and

even third rounds.

We noticed a consistent pattern: players improved with

each attempt. This supported our belief that users would

quickly adapt to the IMU-based controls and become more

confident in steering the game with their core movements.

We had set a benchmark score of 50 as a sign of solid

performance, and most players were hitting or exceeding that

after just a couple of rounds. The learning curve was smooth,

and the game’s mechanics felt intuitive even for first-time

users.
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Player feedback was overwhelmingly positive. Many peo-

ple were surprised to realize they had been planking or

engaging their core the entire time, something that felt more

like play than exercise. These positive reactions verified

the project goals of what we set out to achieve: turning

physiotherapy into something enjoyable and immersive.

On the technical side, the system held up impressively

well. The WebSocket data connection stayed fast and stable,

even with multiple users playing in quick succession. The

React Native app ran smoothly across different phones,

and the Three.js graphics engine kept visuals sharp and

responsive. Even with sustained play, latency was low, and

the controls remained accurate. The setup proved it could

handle a fast-paced, wireless rehab-style game with real-time

sensor input and 3D visuals.

In the end, Spinal Drift delivered exactly what we hoped

for: a meaningful blend of gameplay and therapeutic motion.

The strong user response, consistent engagement, and solid

technical performance all point to its real-world potential as

a scalable and effective tool in interactive physiotherapy.
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Adaptive Chirplet Transform and Deep Learning Algorithms for EEG

based Sleep Stage Detection

João Pedro Bicalho Andrade, Steve Mann

I. ABSTRACT

Electroencephalography (EEG) is a powerful tool for

analyzing brain activity, particularly in the context of

sleep stage detection. However, traditional signal pro-

cessing methods like the Fourier and Wavelet Trans-

forms often struggle to capture the non-stationary and

time-varying nature of EEG signals. This thesis explores

the Adaptive Chirplet Transform (ACT) as a novel

feature extraction technique for EEG-based sleep stage

classification using deep learning. The ACT offers a

dynamic time-frequency representation by matching sig-

nal segments to Gaussian chirplets. A GPU-accelerated

implementation of the ACT was developed and applied

to the Bitbrain Open Access Sleep Dataset, processing

over 10,000 epochs from three nights of sleep. Fea-

ture vectors extracted by the ACT were reshaped into

5×5 matrices and used as input to a hybrid Convolu-

tional Neural Network (CNN) and Gated Recurrent Unit

(GRU) model. The model achieved a training accuracy

of 91.5% and a test accuracy of 57.9%, demonstrating

the ACT’s potential to encode relevant features with a

153.6:1 compression ratio. The findings suggest that,

with further optimization and scaling, the ACT could

become the next state of the art signal processing and

feature extraction method for EEG.

II. INTRODUCTION

Building on the diverse methodologies for EEG analy-

sis, this thesis specifically focuses on the application of

the Adaptive Chirplet Transform combined with deep

learning to detect sleep stage. Sleep stage detection is a

critical area of research due to its significance in diag-

nosing sleep disorders, understanding brain function dur-

ing rest, and developing interventions to improve sleep

quality. Deep learning offers a transformative approach

by automating the extraction of meaningful features

from complex, high-dimensional EEG data. Unlike tradi-

tional manual scoring methods or simpler classification

techniques, deep learning models do well at capturing

sophisticated temporal and spatial patterns within EEG

signals. By using data from publicly available datasets,

this study aligns with broader scientific practices for

benchmarking and comparability while avoiding the

logistical and ethical complexities of collecting new

EEG data.

Techniques such as the Fourier Transform and

Wavelet Transform have traditionally dominated time-

frequency analysis in EEG research. The Fourier Trans-

form decomposes signals into their constituent frequen-

cies, providing valuable insights into rhythmic brain

activity. Wavelet Transforms extend this by combin-

ing frequency and temporal information, enabling the

analysis of dynamic changes over time. However, these

methods face limitations when capturing complex, non-

stationary signal features, such as rapid frequency mod-

ulations or localized transient events. This paper adopts

the Adaptive Chirplet Transform (ACT) as a promising

alternative. [1] [2], [3] Unlike the fixed basis functions of

Fourier and Wavelet Transforms, the ACT dynamically

adapts to the signal’s local characteristics, offering a

more flexible and precise representation of time-varying

EEG patterns. These qualities make the ACT particularly

suitable for sleep stage detection, where subtle physio-

logical changes manifest as transient shifts in frequency

content.

Despite its potential, the application of the ACT to

EEG data remains under-explored, with only a few

studies demonstrating its capabilities. [2], [4]–[12] This

gap presents an opportunity to advance EEG research by

integrating the ACT with state-of-the-art deep learning

architectures. The ACT’s ability to provide a detailed,

dynamic representation of EEG signals enhances the

input to deep learning models, potentially improving

their classification accuracy and robustness. Sleep stage

transitions, which involve nuanced changes in frequency

and amplitude, are especially well-suited for analysis

using the ACT.

The primary objective of this thesis is to address

this research gap by employing the ACT as the feature

extraction algorithm for the EEG data and feed it to a

Deep Learning architecture for the application of sleep

stage detection.

III. BACKGROUND AND LITERATURE REVIEW

A. Introduction to EEG Analysis

Electroencephalography (EEG) is a widely utilized

technique that measures the electrical activity generated

by the brain, allowing for brain wave visualization.

Specifically, it detects minute differences in electric

potential at the scalp, which result from the collective
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activity of post-synaptic potentials produced by neurons

within the cortical layers.

EEG data is used extensively to analyze brain activity,

but EEG signals are highly complex due to their non-

stationary nature, low signal to noise ratio, and the

presence of artifacts from non-neural sources such as

muscular activation. Even after processing, the data

is still extremely intricate and convoluted, making it

difficult to interpret. To extract meaningful information

from EEG signals, the data needs to go through rigorous

processing and analysis.

B. Traditional Methods in EEG Analysis

The analysis of EEG signals spans diverse methodolo-

gies, each suited to different applications and offering

unique insights into brain activity.

1) Event-Related Potentials (ERPs): Event-Related

Potentials (ERPs) represent one of the most established

approaches, involving the identification and analysis of

brain responses that are time-locked to specific events,

such as sensory stimuli or cognitive tasks. Examples

include the P300, a positive deflection occurring roughly

300 ms after an expected stimulus, often used in

BCIs and studies on attention and decision-making, and

Steady-State Visual Evoked Potentials (SSVEPs), which

leverage repetitive visual stimulation for applications

like assistive technology and gaming. ERPs are widely

used in cognitive neuroscience due to their ability to

isolate specific neural processes. However, they require

significant manual preprocessing and are often limited

by their reliance on predefined stimuli and rigid temporal

windows, making them less adaptable to complex, real-

world scenarios.

2) Spectral Analysis: Spectral analysis, another cor-

nerstone of EEG research, focuses on the frequency con-

tent of brain signals to reveal insights into oscillatory ac-

tivity across delta, theta, alpha, beta, and gamma bands.

Each frequency band correlates with distinct cognitive

and physiological states, such as delta waves linked to

deep sleep or alpha waves associated with relaxation

and attention. By employing time-frequency techniques

like Wavelet Transforms or Chirplet Transforms, spectral

analysis bridges the gap between traditional ERPs and

modern deep learning by enabling the study of dynamic

changes in oscillatory activity. It finds extensive use in

both clinical and research settings, such as monitoring

epilepsy, understanding attention dynamics, and tracking

meditation progress. [13]

3) EEG Data Pre-processing, Filtering and Artifact

Removal: Noise and artifacts from non-neural sources

can be broken down into physiological noise and en-

vironmental noise. Physiological sources contributing

the most noise come from eyeball movement, which is

known as electrocorticogram (EOG), the cardiac signal,

known as electrocardiogram (ECG), and muscular con-

tractions, known as electromyography (EMG). Environ-

mental noise can encompass electromagnetic fields in

the vicinity caused by any other non biological sources,

such as those caused from AC power lines or electronic

devices in the room.

Signal processing methods are employed to address

these challenges, enhancing the interpretability of EEG

data. Signal Processing is a broad field and active

area of research, and in the context of EEG signals it

encompasses several different tasks, most notably pre-

processing, feature extraction and analysis and interpre-

tation of data. Pre-processing includes data filtering for

noise reduction and artifact removal, segmenting the data

into appropriate epochs and normalizing the data.

Filters such as low-pass, high-pass, band-pass, and

notch filters are commonly used to retain relevant

brainwave frequencies while suppressing noise from

sources like eye movements or power line interference.

By focusing on frequency-specific manipulations, data

filtering provides a clean, noise-reduced signal, form-

ing the basis for subsequent, more sophisticated signal

processing techniques.

Preprocessing EEG data is a critical step for the

success of deep learning models. Filtering techniques

include bandpass filtering to eliminate frequencies out-

side the range of interest (e.g., 0.5–50 Hz for most

EEG tasks) and notch filtering to remove powerline

interference such as 50 or 60 Hz noise. Artifact removal

methods are employed to mitigate non-brain artifacts,

utilizing techniques such as independent component

analysis (ICA) to separate mixed signals and isolate

artifacts, regression-based methods to subtract artifacts

like eye blinks using reference signals, and consensus

filtering, which applies multiple filtering methods to

ensure signal integrity. Signal standardization, includ-

ing normalization or z-scoring, ensures consistency and

improves convergence during training. [13]

C. Adaptive Chirplet Transform (ACT)

The ACT was originally developed by S. Mann and

S. Haykin in 1991 and since then several papers have

proposed modifications or possible improvements to

it. [3] Some notable examples include the "Adaptive

Linear Chirplet Transform" by Guan et Al. the "Multi-

Scynchrosqueezing Chirplet Transform" by Zhu et Al.

[14] the "Enhanced Adaptive Linear Chirplet Transform"

(EALCT) by Lopez et Al. [7] and lastly, developed

by Chui et Al., the Chirplet Transform-based signal

separation scheme (CT3S). [15]

Given its flexibility and capability to capture infor-

mation on signals that vary both in time and frequency,

the ACT has also been used across a wide range of

applications. From aircraft bearings fault diagnosis, to
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P300, VEPs and epileptic seizure detection with EEG,

target recognition from RADAR technology, and more.

[2], [9], [16]–[18]
After a thorough analysis of several different versions

and models of the ACT it was clear to see that the paper

which aligned the most with the goals set out by this

thesis was the work of Bhargava et Al. Besides using the

ACT to analyze P300 signals from EEG data, Bhargava

also published an open source Python implementation of

the ACT optimized with the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm.
The implementation works by creating an ACT class

that is able to perform the Adaptive Chirplet Transform

on any given signal. The class initializes by either

generating a dictionary of Gaussian chirplet functions

or loading one from the cache if one has already been

generated. The size of the dictionary is variable, and it

depends on some of the parameters passed in by the user

when creating an instance of the class.
The equation for a general Gaussian Chirplet is shown

below:

g(t) =
1

4
√
π
√
∆t

exp

{

−1

2

(

t− tc

∆t

)2

+j · 2π [c(t− tc) + fc(t− tc)]

(1)

The Gaussian chirplet above has a center time tc,

duration ∆t, frequency modulation (chirp) rate c, and

center frequency fc. These four parameters are what is

needed to fully characterize a Gaussian chirplet func-

tion. The dictionary then is constructed by generating

different Gaussian chirplets varying these parameters

over a range and step size defined by the user when

instantiating the class.
Once the dictionary has been generated, the ACT

compares the given signal to the Gaussian Chirplets

in the dictionary, and it picks the one which most

closely matches the signal, using the BFGS optimization

algorithm to do so. This step is called a first order

Chirplet Transform, and this step can be repeated as

many times as desired, achieving a higher order ACT.

More concisely, this method represents a signal as a

linear combination of chirplets, which are Gaussian-

windowed, frequency-modulated basis functions.
For an N order ACT, this implementation returns

several lists. First a list of coefficients, where the nth

element of the lists represents the coefficient that scales

the best match Gaussian Chirplet chosen in the nth

iteration of the algorithm. Followed by this it returned

a list of size 4 ∗ n, where the elements are the four

parameters necessary to identify each of the chosen

Gaussian Chirplets from the dictionary. For the purposes

of applying the ACT, these two lists are the most

important, but it also provids a residue list and a raw

error list, both of which could be used as a measure

of how accurately the signal was reconstructed by the

chirplet transform at different orders.

D. EEG and Deep Learning

Deep learning has emerged as a powerful tool for EEG

analysis because it can automatically extract meaningful

patterns and features from raw data without requiring

extensive manual processing or domain-specific feature

engineering. It has enabled breakthroughs in tasks that

were previously difficult or impossibly unpractical to

achieve using conventional methods. Furthermore, re-

cent advances in deep learning architectures and com-

putational resources keep accelerating progress in this

field.

Deep learning has been widely applied to various EEG

classification tasks, which can be broadly categorized

into domains such as sleep stage classification, mental

state and emotion recognition, disease detection and

diagnosis, and brain-computer interfaces (BCIs).

Sleep stage classification involves identifying distinct

sleep stages, such as NREM and REM, based on EEG

patterns, facilitating research in sleep medicine and sleep

disorders.

Mental state and emotion recognition tasks focus on

classifying cognitive states (e.g., focused vs. relaxed)

and emotions (e.g., happiness, stress), often utilized in

human-computer interaction applications.

Disease detection and diagnosis tasks aim to iden-

tify neurological disorders like epilepsy, Alzheimer’s

disease, and Parkinson’s disease, with seizure detection

from EEG signals being a prominent application.

Lastly, BCIs enable control of external devices using

EEG signals, involving tasks such as motor imagery

classification and control signal generation.

These applications showcase the versatility and trans-

formative potential of deep learning in EEG analysis.

1) Input to Neural Networks: The choice of input

data for neural networks is a critical factor in determin-

ing the performance of EEG analysis models. Different

research approaches vary in their use of raw EEG sig-

nals, preprocessed data, and transformed representations

to optimize neural network training.

While some studies utilize raw EEG signals as input

relying simply on the feature extraction power of the

Neural Network, the vast majority of research em-

phasizes preprocessing and filtering as essential steps.

Techniques such as bandpass filtering, notch filtering to

remove powerline interference, and independent com-

ponent analysis (ICA) for ocular and muscular artifact

removal are widely employed. These methods enhance

signal quality and ensure cleaner inputs for neural net-

works.
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However, beyond initial preprocessing and filtering,

there is little consensus among researchers on the extent

of artifact removal or the specific techniques to employ.

For instance, some studies apply rigorous artifact re-

moval to eliminate non-neuronal signals entirely, while

others retain certain artifacts to preserve additional fea-

tures of the raw signal.
A recent review of 89 studies on deep learning for

EEG classification highlights this lack of consensus and

variability in pre-processing strategies. [19] The accom-

panying visual graph from the review illustrates the

proportion of studies adopting different artifact removal

methods, noting that the majority of studies either did

not specify or did not use removal methods.

Fig. 1: Artifact removal methods in Deep Learning

EEG classification, as summarized in a review of 89

studies.

Transformations of EEG data into alternative domains

further diversify input preparation strategies. Frequency-

domain techniques, such as the Fourier Transform, de-

compose the signal into its spectral components, provid-

ing insights into frequency-specific brain activity. The

Wavelet Transform, offering a time-frequency represen-

tation, is frequently utilized to capture transient and non-

stationary patterns in EEG signals. These transformed

representations can augment neural network models by

emphasizing specific aspects of brain activity relevant to

the classification task. [20]
Figure 1 is complemented by another systematic

review that analyzed 154 studies on deep learning-

based EEG analysis. [21] This review explored different

input strategies and neural network architectures, shed-

ding light on trends across various methodologies. The

insights from these reviews reinforce the importance

of aligning input preparation strategies with specific

research objectives.
This research will focus on using the Adaptive

Chirplet Transform (ACT) as the chosen signal pro-

Fig. 2: Deep learning architectures across 154 studies

analyzed in "Deep learning-based

electroencephalography analysis: a systematic review".

’N/M’ stands for ’Not mentioned’ and accounts for

papers which have not reported the respective deep

learning methodology aspect under analysis. (a)

Architectures. (b) Distribution of architectures across

years. (c) Distribution of input type according to the

architecture category. (d) Distribution of number of

neural network layers.

cessing method due to its promising results in cap-

turing time-frequency characteristics in other domains.

The ACT’s ability to provide detailed temporal and

spectral representations aligns well with the goals of

this study, offering a powerful alternative to traditional

signal processing and feature extraction techniques. By

applying the ACT, the aim is to enhance the quality of

the inputs to the neural networks and explore its potential

to improve EEG and Deep Learning based sleep stage

classification performance.

2) Deep Learning Architectures: Deep learning ar-

chitectures play a crucial role in determining the per-

formance and adaptability of models used for sleep

stage detection with EEG data. The aforementioned

review article of 89 studies on deep learning for EEG

classification provides valuable insights into the variety

of architectures employed in the field. [19] The findings

are summarized in Figure 3, which illustrates the dis-

tribution of different deep learning architectures across

these studies.

The figure above highlights the diversity of ap-

proaches, including CNNs, RNNs, LSTMs, GANs,

VAEs, and hybrid models, among others.

The landscape of deep learning applications for EEG-

based sleep stage detection is marked by a variety of

innovative approaches. Each architecture offers unique

strengths and capabilities, reflecting the diverse chal-

lenges associated with analyzing EEG data. From cap-

turing intricate spatial patterns to modeling temporal
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Fig. 3: Deep learning architectures utilized in EEG

sleep stage detection.

dynamics, the choice of architecture is often influenced

by the specific requirements of the task, the nature of

the data, and the desired level of interpretability. By

exploring the relative merits and limitations of these ar-

chitectures, researchers aim to uncover optimal strategies

for improving classification performance and advancing

the state of the field.

Convolutional Neural Networks (CNNs) are widely

used for their ability to automatically extract spatial

features from EEG data. [22] They excel in handling

structured grid-like data and are particularly effective

for time-series and spectrogram-based EEG representa-

tions. Many studies employed CNNs in pure form or

hybridized with other architectures to enhance perfor-

mance. Recurrent Neural Networks (RNNs), designed

for sequential data, capture temporal dependencies in

EEG signals and are particularly suited for tasks re-

quiring the modeling of temporal dynamics, such as

sleep stage transitions. Long Short-Term Memory Net-

works (LSTMs), a specialized type of RNN, address the

vanishing gradient problem, enabling them to capture

long-term dependencies in sequential data. Similarly, the

Gated Recurrent Unit (GRU) is a specialized type of

RNN, simpler than an LSTM with fewer parameters and

faster training but typically achieving similar results as

LSTMs. [23] These are frequently used in hybrid models

to complement the spatial feature extraction capabilities

of CNNs.

Deep Belief Networks (DBNs), comprising layers of

stacked restricted Boltzmann machines, were among the

earlier deep learning architectures applied to EEG data.

Although less commonly used in recent years, they have

shown utility in unsupervised feature learning.

Autoencoders are particularly useful for dimension-

ality reduction and feature extraction, learning compact

representations of EEG data, and are often used as a

preprocessing step before classification.

Hybrid models combine multiple architectures such

as CNN-LSTM hybrids. These models are designed to

capture both spatial and temporal dynamics of EEG

signals, thereby improving classification accuracy.

While CNNs and their hybrid variations dominated

the reviewed studies, the lack of consensus on the

optimal architecture underscores the exploratory nature

of this field.

Moreover, it is important to note that this review was

conducted prior to the advent of Transformers, a ground-

breaking architecture that has revolutionized AI by beat-

ing state of the art performance in applications that

capture long-range dependencies and attention-based

modeling. Transformers have already demonstrated im-

mense potential in domains beyond EEG analysis, and

their application to sleep stage detection represents a

promising area for future research. [24]

The diversity of architectures highlighted in the re-

view emphasizes the ongoing evolution of deep learning

methodologies for EEG-based sleep stage detection.

E. Summary of Research Gaps and Objectives

1) Identified Gaps: Despite advancements, the appli-

cation of the ACT to EEG data remains limited, with

few studies exploring its full potential. Similarly, the

integration of advanced feature extraction methods with

deep learning is still an emerging field.

There is a lack of studies integrating the ACT with

deep learning for EEG analysis, particularly in sleep

stage detection. The potential of the ACT for capturing

subtle physiological changes has not been fully realized.

Furthermore, there is no consensus on the optimal

deep learning architecture for sleep stage detection. The

field of Machine Learning is extremely active, with

novel architectures being developed on a weekly basis.

IV. METHODS

A Python pipeline was developed for this thesis with

the purpose of evaluating the Adaptive Chirplet Trans-

form as a novel feature extraction method for EEG based

sleep stage prediction.

Below follows a diagram of the full pipeline from raw

EEG signal to sleep stage prediction:

A. Pre-Processing

As aforementioned, one of the key parts of any study

using EEG data is to pre-process the EEG signals in

an attempt to remove as much noise in the data as

possible. For this thesis a Python pipeline for EEG

data pre-processing was developed. The first step in
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Fig. 4: Diagram of pipeline from raw EEG data to

final sleep stage prediction

the pipeline is to download all of the data as an

MNE raw data class. MNE is the most commonly

used Python library for analysis of EEG and MEG

data and it is used to implement the filters used in

this pipeline. [25] The pre-processing pipeline includes

bandpass filtering to isolate relevant frequency bands

associated with sleep stages and notch filtering to elim-

inate powerline interference, a common artifact in EEG

data. The bandpass filter between 1 to 40 Hz was

applied using a zero-phase FIR filter with a Ham-

ming window, followed by a notch filter at 50 Hz to

eliminate power line interference; both filters were im-

plemented using MNE-Python’s raw_data.filter

and raw_data.notch_filter functions with a

firwin design. The firwin design was a chosen pa-

rameter which has been deemed ideal for EEG signal

processing. From Widmann et Al. Digital filter design

for electrophysiological data - a pratical approach: "FIR

filters are easier to control, are always stable, have a

well-defined passband, can be corrected to zero-phase

without additional computations, and can be converted

to minimum-phase. We therefore recommend FIR filters

for most purposes in electrophysiological data analysis."

[26]

These preprocessing steps are essential for ensuring

that the EEG signals have some reduction from noise and

artifacts while retaining the physiological features neces-

sary for accurate sleep stage classification. The pipeline

was designed to process EEG data in a consistent and

scalable manner, facilitating future experimentation with

both small-scale and large-scale datasets.

Another significant area of progress is the meticulous

design of data segmentation and epoching strategies.

Recognizing that the accurate detection of sleep state

transitions requires both temporal precision and com-

putational feasibility, epoch lengths were carefully cho-

sen. These lengths were optimized to strike a balance

between capturing rapid changes in brain activity and

maintaining manageable computational loads for the

ACT and subsequent analyses. This alignment ensures

that the data preparation phase supports the broader

objective of precise sleep stage detection.

1) Windowing and Overlap Strategy: Following the

initial cleaning of the data, the EEG signal was seg-

mented into overlapping epochs of 15 seconds. Window-

ing was applied to each segment to reduce spectral leak-

age, which are artifacts introduced by the assumption

that the signal is periodic across window boundaries.

A variety of window functions were considered, each

balancing trade-offs in main-lobe width, side-lobe atten-

uation, computational cost and ease of implementation.

The following windows were considered: Dirichlet,

Bartlett, Hann, Hamming, Blackman and Kaiser. The

rectangular window (Dirichlet window) applies no

tapering, preserving amplitude but leading to significant

spectral leakage due to high and slowly decaying side

lobes. The Bartlett window (triangular) offers slightly

reduced leakage but lower energy retention. Hann and

Hamming windows are cosine-based functions com-

monly used in signal processing. Hamming has a slightly

narrower main lobe and better side-lobe attenuation than

Hann. The Blackman window provides even greater

side-lobe suppression at the cost of a wider main lobe

and increased computational load. Lastly, the Kaiser

window, which is based on the Bessel function, offers

flexible trade-offs by adjusting the shape parameter β.

For this thesis, the Hamming window was selected

for its favorable balance of computational efficiency,

main-lobe width, and side-lobe suppression. It is also

the default window in MNE-Python’s FIR filter imple-

mentation, which was used for the band-pass filter and

notch filter that were applied in the previous step of the

pipeline.

To mitigate the known issue of edge degradation,

where signal quality is poorer at the edges of a window,

a 75% overlap was used between consecutive epochs.

This ensures that each time point is well represented in

at least one central region of a window, where approxi-

mation quality is highest. The impact of windowing on

signal quality is illustrated in Figure 5.

The image above shows just how much difference

the application of a Hamming window made when

compared to a Dirichlet window in terms od approxi-

mation accuracy. Using the same exact ACT parameters
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TABLE I: Comparison of Common Window Functions

Window Type Main-lobe Width Stopband Attenuation Features

Rectangular Narrow ~13 dB High leakage

Bartlett (Triangular) Moderate ~26 dB Simple, low leakage

Hann (Hanning) Moderate 44 dB Smooth cosine taper

Hamming Moderate 53 dB Better passband performance than Hann

Blackman Wide 74 dB Excellent attenuation, more computation

Kaiser (β = 6–8) Adjustable Flexible Tunable trade-off via β

Fig. 5: Effect of Hamming Window on Signal

Approximation

and ACT dictionary, the signal reconstruction under the

Hamming window is visibly considerably superior.

B. Dataset

To further strengthen the study, the Bitbrain Open

Acess Sleep Database was selected for analysis. [27]

This dataset was chosen due to its high quality labeling

procedure and abundant amount of sleep data, which

provided enough samples to train a machine learning

model on it. Providing a more reliable foundation for the

thesis experiments and a better ground-truth to compare

the model’s accuracy against.

The dataset consists of 128 full nights of sleep

data from 108 participants, including Polysomnography

(PSG) data, EEG data, and a sleep stage label.

The sleep stage label included Wake, NonREM sleep

stages one through three, REM sleep, PSG disconnec-

tion, and lastly a label for artifact or missing data.

Additionally, the labelling was done by three expert

sleep scorers independently, and they followed the crite-

ria developed by the Academy of Sleep Medicine. [28]

Labels were provided for epochs of 30 seconds, and

label had to be agreed upon by at least two of the scorers.

In cases where a consensus was not achieved between

the three experts, a fourth one was brought in to make

the final decision. This was done to reduce possible

human error and disagreement in sleep scoring, as there

is inherent variability between experts when it comes to

classifying sleep stages, with an estimated inter-scorer

agreement of approximately 85%. [29]

The selected dataset was subjected to the preprocess-

ing pipeline, downloading both EEG channels into an

MNE object and then applying the band pass and notch

filters, followed by data segmentation and epoching and

the application of the ACT.

C. Adaptive Chirplet Transform

Building upon the theoretical background of the algo-

rithm presented in the background, this section details

how the ACT was implemented and adapted for use in

this thesis.

1) Dictionary parameter tuning: The ACT Python

open source implementation from Barghava was used

as a baseline. [9] However, early testing, particularly

informed by a conference paper published by our re-

search group, revealed many changes were necessary

to the initialization parameters for the ACT class and

dictionary generation. [30]

The chirplet dictionary is created by generating Gaus-

sian chirplets over the following user-defined ranges:

tc ∈ [tmin, tmax] in steps of δt, fc ∈ [fmin, fmax] in

steps of δf , log∆t ∈ [log∆tmin, log∆tmax] in steps of

δ(log∆t), and c ∈ [cmin, cmax] in steps of δc.

Each point in this 4D parameter space corresponds to

a unique chirplet, which is generated and stored as a row

in a dictionary matrix. Given an input signal, the trans-

form iteratively selects chirplets that best approximate

the signal via dot product projection, followed by lo-

cal parameter refinement using numerical optimization.

The result is a compact, interpretable time-frequency

representation consisting of a set of optimized chirplet

parameters and their associated coefficients.

The defined parameter ranges have to be carefully

selected for the given problem. For example, Bhargava

used this implementation to study a P300 signal. The

P300 is an event related potential which has a de-

lay between stimulus and response of roughly 250 to

500ms. Thus, when using the ACT to analyze P300, the

[tmin, tmax] parameter may range between 0 to 500ms.

However, this time range would not work for sleep

stage research, as discussed in background the scientific

consensus for analyzing EEG data for sleep staging is

15 second epochs. This is roughly the amount of time
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that shows enough transient features in the brainwave

data such that the differences between sleep stages can

be captured. With shorter epochs there might not be

enough frequency changes and patterns that would allow

an expert or machine learning model to properly figure

out which sleep stage the epoch corresponds to.

Besides this, running the ACT on 500ms alone for

sleep would require thirty times more epochs to be

run, which would be computationally prohibitive for

processing a full night of sleep.

When it came to the initialization parameters used

for the ACT for this study there were two majors

factors two consider. First and foremost was the fact that

there was a significant trade-off between computational

requirements and accuracy of signal approximation.

An incredibly near perfect signal approximation

and reconstruction can be achieved with the Adaptive

Chirplet Transform, but it requires a dictionary so ex-

tensive that the computation time is simply too large and

the RAM requirements alone make it so that it can’t be

run on most modern laptops.

The second factor to consider was physiological. The

time ranges should match the rough time duration where

enough change has happened within the EEG signal such

that sleep scoring could be achieved, which is roughly

between 5 to 30 seconds. Similarly, the frequency range

combined with the chirp rate should match known values

of frequency ranges of brainwaves, typically listed as

0.5 to 40 Hz. These provide the bounds and guidelines

on the minimum and maximum ranges of each of the

parameters.

The step size, however, is purely motivated by the

above mentioned trade off of computational require-

ments and overall signal quality. Figures below demon-

strate the effect of varying step size and parameters on

the accuracy of the approximation.

From the images below, it is clear to see that the

smaller the step size, the better the approximation be-

comes. Note that the difference between 0.1 to 0.5 in

frequency step size was the largest, where with 0.1 the

reconstructed signal is a very close match of the original,

especially in the middle, with some leakage from the

sides causing a slightly less accurate reconstruction. This

is in part due to the fact that the image above was

constructed using a Dirichlet window, which has this

known effect. The final parameters were constructed

using a Hamming window which greatly minimizes the

seen leakage effect at the boundary.

The visualization code that generated the graphs

above was used to analyze epoch by epoch of several

different parameter step sizes and after trial and error

a final parameter range was decided upon. The final

parameters are shown below:

Final Parameters: tc: (0, 3840, 64); fc: (0.6, 15, 0.2)

(a) 0.1

(b) 0.5

Fig. 6: Impact of the Frequency Step Size on

Approximation of the ACT.

(a) 20

(b) 200

Fig. 7: Impact of the Time Step Size on the

Approximation of the ACT
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The time scale is in samples rather than seconds, since

the sampling rate of the EEG recording device used was

256Hz, 3840 represents 15 seconds worth of sleep EEG

data. A number that was chosen to follow the literature

consensus on sleep stage analysis.

2) Parallelization of code: The original implemen-

tation of the Adaptive Chirplet Transform (ACT) was

not well-suited for large-scale processing. It relied on

CPU-based loops and NumPy operations, which made

it impractical for analyzing full-length EEG recordings,

especially when using longer epochs, high overlap, or

finely-sampled parameter dictionaries. After reviewing

performance limitations, I rewrote the pipeline to take

advantage of GPU computing and parallel processing.

To run the transform more efficiently, the ACT code

was adapted to work with CuPy, which mirrors the

interface of NumPy but runs operations on the GPU.

The new implementation was run on a Lambda Labs

server equipped with an NVIDIA A100 SXM4 GPU

with 40 GB of VRAM. The EEG data, along with the

generated chirplet dictionary and intermediate arrays like

window functions, were all transferred to GPU memory

so that the ACT could be computed without moving data

between devices during processing.

One of the main changes involved rewriting how

epochs were created and processed. Instead of slicing

each epoch on the CPU, the entire EEG signal was trans-

ferred to GPU memory at once. Epoch segmentation,

windowing, and chirplet projections were then done in

parallel on the GPU. The transform itself, especially the

dictionary matching and optimization steps, saw major

speedups due to the GPU’s ability to handle thousands

of operations at once. Only the final results, such as the

fitted parameters and coefficients, were transferred back

to CPU memory for saving and plotting on csv files. For

reference, a csv file containing one full night of sleep

was on average 900 Mega bytes long.

These changes made the ACT usable for full-night

recordings and also opened the door to running more

detailed parameter sweeps and real-time variants in

future work. The entire GPU pipeline was integrated

into a single script that could batch process subjects and

automatically save results in a format suitable for later

use in neural network training.

Despite these improvements, with the ACT dictionary

parameters used, and the 75% window overlap, it still

took 33.4 hours to run 3 out of the 128 full nights of

sleep, costing a total of USD$43.11. With an average

time of eleven hours of GPU time to process eight

hours worth of EEG. The computational complexity of

the Adaptive Chirplet Transform remains the biggest

roadblock preventing it from having the capacity of

becoming the standard EEG feature extraction method

and achieving widespread usage in EEG data analysis

and other domains and fields of signal processing.

Due to financial constraints and not having access

to GPUs in house, this research was limited to only

processing three out of the one hundred and twenty eight

nights of sleep. Due to the sheer amount of epochs, in

part due to the 75% overlap, three nights of data was

still enough to provide over twelve thousand epochs.

However, after processing it so it would be suitable for

the Neural Network, it ended up resulting in 10,633

samples.

D. Deep Learning Based Sleep Stage Detection

This section details every step taken from preparing

the data post ACT to making it suitable to be used as

an input into the Neural Network, and the design and

architecture of the Neural Network itself.

1) Input preparation for Neural Network: The im-

plementation of the ACT used returns a csv file which

contains per row, a list of coefficients (of length 5 since a

5th order transform was employed), a list of parameters

(of length 20), a list of residue, original signal, and error.

A separate Python pipeline was coded to handle the

data preparation for the Neural Network, starting from

downloading the csv files containing the results from the

ACT.

The pipeline begins by extracting only the coefficients

and parameters of each epoch, and transforming it into

a 5x5 matrix. Where the rows of the matrix represent

a each respective ACT order approximation. Such that

each coefficient was joined with its respective function

defining four parameters, and the first column of the

matrix stood for the coefficients, wheres the remaining

four columns were filled with the parameters.

This restructuring was done to make use of the power

of two-dimensional Convolutional Neural Networks,

which have been established as the most commonly used

architectures for EEG data. Furthermore, this ordering

made the structure of the data more explicit with the

hopes it would be easier for the Neural Network to

identify the most important features of the data faster.

For example, within this ACT resultant 5x5 matrix,

the first column will always be more important than

the second and so forth. This information could be

given to the Neural Network with careful selection of

initialization of weights.

Another crucial step with the data was to relabel it

carefully. As previously mentioned, the original EEG

data from Bitbrain contained labels per every 30 second

epoch. However, since the Hamming window was ap-

plied with 75% overlap, the epochs no longer spanned

only single labeled epochs. Rather, there was a large

amount of epochs that spanned two different labels. To

ensure no sample points were unnecessarily lost, an

algorithm was written to calculate the exact time of
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each new ACT processed epoch and map it back to the

original labeled epochs. Then, the algorithm checked

for every epoch that spanned two labels (due to the

duration none spanned more than two), and checked

whether the overlapped labels were the same or different.

If the sample was overlapping a sleep stage transition

period (meaning it spanned two different labels) it was

discarded from the dataset.

Following this, epochs assigned to labels -2 (PSG dis-

connected), 3 (Non REM sleep stage 3), and 8 (artifact)

were removed from the classification. This was because

within the 3 subjects data alone there was essentially

no data points for these labels (less than 0.1% of the

data). This was not enough for the model to learn to

distinguish these patterns but if included it made the

learning process of the model much slower and had

a significant negative effect on the performance and

accuracy of the model. Regardless, two of the stages

represent mal-labeled data, so removing it altogether

from the dataset was an improvement in the overall data

quality used for training the model and made it so that

the model focused solely on the standard sleep stages,

Wake, N1, N2, and REM.

The dataset was then split into training, validation, and

test sets using a stratified splitting strategy. Stratification

was done to preserve the original label distribution

across each of the 4 categories, which was especially

important because some categories had considerably

more data points than others. The data was split such

that 70% was used for training and the remaining 30%

was split evenly between validation and training.

To mitigate the issue of massive class imbalance, the

training data was oversampled to balance class count.

The oversampling was done by duplicating samples

for the underrepresented classes until all classes had

the same number of examples. This ensures the model

would not bias towards more frequent stages during

training.

Oversampling improved the accuracy of the model

considerably, almost doubled it in fact. However, it is

only done for the training data and not for the validation

or test. This is a common practice in the field of Machine

Learning, as the validation and test are meant to be

representative of how the model would generalize and

perform with real world data, oversampling is generally

avoided and frowned upon for validation and test sets.

After the oversampling, all feature tensors were stan-

dardized using StandardScalar from the sklearn library.

This transforms the tensors such that they have a mean

of zero and unit variance.

Lastly, the input tensors were grouped into small

batches of a given sequence length. The sequence length

used for this particular model was four, this value

was a hyperparameter of the model. The purpose of

these batches was so that temporal information could

be passed into the model and to take advantage of

the fact that typically sleep stages remain constant for

much longer than the period of an individual epoch.

Therefore, if one knows the sleep stages of a given

amount of previous epochs, this information can be used

to influence the decision of the model. If the previous

three epochs were all at a given sleep stage, then the

probability that the current epoch is at that same sleep

stage should be higher.

These batches were shuffled before generating the

validation/train/test splits to help with generalization of

the model.

2) CNN + GRU Hybrid Model: To model the spatial

and temporal structure of the chirplet-transformed EEG

data, a hybrid neural network architecture combining

Convolutional Neural Networks (CNNs) with Gated

Recurrent Units (GRUs) was used.

The CNN component is applied independently to each

time step in the input sequence. Each input matrix has

shape 1×5×5 (channels × height × width), and is passed

through a single convolutional layer with 16 output

channels and a kernel size of 3×3 (with padding to

preserve spatial dimensions). This layer captures local

patterns between chirplet features while maintaining a

manageable number of parameters. The resulting ac-

tivation for each time step has shape 16×5×5, which

is then flattened into a vector of size 400. These 400-

dimensional vectors are stacked in temporal order, form-

ing a [batch size, sequence length, 400] tensor passed

to the GRU.

The GRU layer contains 2 stacked layers, each with a

hidden size of 64. It processes the temporal sequence of

CNN-extracted features in a recurrent manner, learning

to model dependencies and transitions across time. The

final hidden state from the GRU is used as a summary

representation of the entire sequence. This final state is

passed through a fully connected linear layer to produce

class scores for sleep stage classification.

The CNN-GRU model was trained using cross-

entropy loss with class weights to compensate for class

imbalance, and optimized using the Adam optimizer.

Class weights were computed from the training data

after oversampling to maintain fairness across classes.

V. RESULTS AND ANALYSIS

Below is the confusion matrix from running the

CNNGRU model described above for 100 epochs, with a

learning rate of 0.001, batch size of eight and sequence

length of four on the Chirplet Transformed data from

the first 3 nights of sleep of the Bitbrain Dataset.

The model achieved a final training accuracy of

91.54%, indicating that it was able to effectively learn

the relationships between the input features and the sleep
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Fig. 8: Confusion Matrix - Final Model Result

stage labels during training. This high training perfor-

mance suggests that the Adaptive Chirplet Transform

(ACT) is a strong candidate for feature extraction in

EEG-based sleep stage classification, thus validating the

initial hypothesis of this thesis.

Since the ACT captures both time and frequency

domain features with high precision, it allowed the

CNN-GRU model to extract the most meaningful dis-

criminative patterns for each sleep stage.

Furthermore, it does this by also achieving incredible

compression as it approximates a 15 second epoch of

raw signal containing 3840 sample points (stored as

floats) using 25 floats instead, comprised of the chirplet

coefficients and parameters.

The compression ratio (CR) is defined as the ratio of

the original signal length to the compressed one:

Compression Ratio =
Original size

Compressed size

=
3840

25
= 153.6 : 1

(2)

Equivalently, this corresponds to a compression rate

of:

Compression Rate =
25

3840
≈ 0.00651 ⇒

0.651% of the original signal retained
(3)

This indicates that the ACT representation retains only

about 0.651% of the original signal data per epoch,

highlighting its effectiveness for compact, interpretable

signal encoding.

However, the validation (52.76%) and test accuracy

(57.93%) were significantly lower. This gap can be

attributed to the fact that only the training data was

oversampled to balance class distributions, while valida-

tion and test sets still had their original imbalances. The

model may have generalized poorly to underrepresented

classes it didn’t see as frequently in validation/testing,

highlighting the detrimental impact of class imbalance

on final performance evaluation.

A closer look at the confusion matrix reveals impor-

tant patterns. N2 sleep was the most prevalent class in

the dataset (with 1133 test samples) and had the highest

number of correct predictions (682), which contributed

heavily to the overall accuracy. Wake was often confused

with N2, as 115 of the Wake samples were misclassified

as N2. REM sleep was also frequently confused with

N2 (58 instances), while N1 showed poor classification

performance overall, with only 1 correctly classified

sample and most misclassified as N2.

This suggests a clear prediction bias toward N2, which

is likely due to its overwhelming presence in the dataset.

The network, trained on oversampled data but evaluated

on imbalanced splits, defaulted toward the dominant

class when uncertain.

Furthermore, while the overall test accuracy is lower

than other results in the area of Deep learning catego-

rization using EEG data, it is important to note that the

particular issue of sleep staging is complicated and there

is intervariability even amongst human experts, with

results of about 85% agreement. This gives important

context to the results.

VI. CONCLUSION AND FUTURE WORK

The results achieved with this thesis show that the

Adaptive Chirplet Transform has great potential to be

an excellent method of feature extraction for EEG based

Deep Learning applications. It manages to extract the

most meaningful features of the data and it does so with

astounding compression rate. A feature that could be

very useful for Brain Chip Interface (BCI) applications

where memory tends to be limited.

The relatively low accuracies displayed in the valida-

tion and test sets are to some extent explained by the

large class imbalance in the data used. This can be likely

vastly improved if the full pipeline is run on the full

Bitbrain dataset, going through one hundred and twenty

eight full nights of sleep rather than just three.

The largest roadblock at this time remains the compu-

tational complexity of the Adaptive Chirplet Transform.

With the final ACT generation parameters used, the

dictionary contains over 1.4 million Chirplet Gaussian

functions, which makes it so that each epoch has to go

through many dot products before finding the optimal

chirplets. This currently takes around eleven hours to

process eight hours worth of EEG data on A100 GPUs,

making it almost but not quite suitable for real-time

performance.

It is quite possible that this time complexity could be

greatly reduced by the generation of a more optimized
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dictionary. For example, instead of generating every sin-

gle Chirplet Gaussian from the minimum and maximum

values for the four parameters at the given step size,

the dictionary could be crafted by the Chirplet Gaussian

functions that are most widely seen and used. Further

research is required to determine a reasonable dictionary

size, and exactly how much this can speed up the

ACT computation time. Once again, the optimal answer

will undoubtedly come down to a trade-off between

reconstruction accuracy and computational complexity.

A possible approach would be to run the current

ACT version for a handful more hours’ worth of data

while keeping track of all of the chirplet functions that

were chosen. Then create a dictionary solely from these

chosen functions. This approach could also be done

adaptively.

As for direct future steps for this research, given

access to GPUs and the computational resources. The

remainder of the Bitbrain dataset could be run with the

current ACT implementation and the model could be

trained with a much larger and more balanced dataset.

This would test and hopefully confirm the hypothesis

that the high training accuracy but low validation and

test accuracies can be largely explained by the class

imbalance in the current validation and test datasets.
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Abstract—The Adaptive Chirplet Transform (ACT) offers a
time-frequency decomposition for nonstationary signals, but its
high computational cost has limited practical adoption. In this
work, we present a preliminary GPU-accelerated implementation
of ACT using CUDA unified memory and CuPy. On a 10-
second EEG segment with a 324,000-element dictionary, our GPU
implementation achieved a 12.9× speedup over a multithreaded
CPU baseline (1.06s vs. 13.67s) using float32 precision. While
dictionary generation remains faster on CPU, its one-time cost is
mitigated by caching. Our results demonstrate the feasibility of
using GPU acceleration for local, iterative workflows. A forth-
coming conference paper will expand this work to include full
performance profiling, resource usage analysis, and scalability
benchmarking.

INTRODUCTION

The increasing need for real-time and high-throughput anal-

ysis of signals demands more adaptive and efficient time-

frequency analysis methods. Traditional approaches like the

Fourier and wavelet transforms are limited in their ability to

capture the nonstationary, transient features inherent in these

signals. The Chirplet Transform, first introduced by Dr. Steve

Mann, offers enhanced flexibility by allowing both frequency

modulation and adaptive resolution, making it particularly

well-suited for signal processing.

Despite its theoretical strengths, the practical adoption of

the Adaptive Chirplet Transform (ACT) has been hindered by

its computational demands. In a personal case study involving

a sleep dataset with recordings from over 130 participants,

an online GPU-based estimation (using vRAM-only memory

models) projected a total runtime of over 42 days for full-

scale Chirplet decomposition [1]. Worse still, any experimen-

tal misstep or configuration error would require restarting

the process which makes cloud-only deployment both costly

and inflexible. This showcases that the need for local GPU-

accelerated tools to support iterative development.

To address this, we present a unified-memory-based GPU

implementation of ACT that balances performance with flex-

ibility. By enabling efficient local processing and debug-

ging, our implementation is optimized for real-world research

pipelines, including those involving large datasets.

BACKGROUND AND PRIOR WORK

The Chirplet Transform is a time-frequency analysis method

that extends the Gabor and wavelet transforms by having both

time-varying frequency and frequency-modulated components.

Originally developed in by Mann and Haykin in 1991, the

Chirplet Transform provides a more adaptive representation

of nonstationary signals, making it particularly useful for ana-

lyzing signals, where transient events and variable oscillations

are common [2].

Recent years have seen increased demand for tools that can

scale such transforms to large datasets and real-time pipelines.

While initial implementations of the Adaptive Chirplet Trans-

form (ACT) were CPU-based, the need for faster, more

scalable analysis tools has led to early explorations of GPU

acceleration.

In parallel, prior work on OpenVidia, an open-source GPU-

accelerated signal processing library, demonstrated the fea-

sibility of porting complex DSP algorithms to GPUs using

CUDA [3]. Building on that philosophy, this project explores

a dedicated GPU implementation of ACT, with optimizations

that include unified memory, stream-based parallelism, and

profiling-informed memory management. This represents a

natural and necessary step in making Chirplet-based analysis

practical for real-time and embedded use cases.

METHODOLOGY

We implement a GPU-accelerated version of the Adaptive

Chirplet Transform (ACT) using CuPy and CUDA unified

memory to enable efficient decomposition of signals. Unified

memory allows seamless access between CPU and GPU,

simplifying development and supporting large dictionary sizes

without explicit memory transfer bottlenecks and increasing

the amount of RAM that the ACT can use.

A four-dimensional chirplet dictionary is generated over

time center, frequency, log-duration, and chirp rate parameters.

Each combination defines a basis function used to analyze

overlapping windows of the input signal. Dictionary gener-

ation and signal decomposition are parallelized: each GPU

thread processes a unique parameter combination, enabling

large-scale evaluation in a single pass. During transformation,

the signal is iteratively approximated by projecting onto the

dictionary, selecting the best-matching chirplet, optimizing its

parameters, and subtracting it from the signal. Intermediate

results are cached to support debugging and reuse. This

approach balances performance and flexibility, making ACT

viable for real-time or iterative analysis on large datasets.
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RESULTS AND DISCUSSION

In this preliminary evaluation, we focused on the transform

phase of the Adaptive Chirplet Transform, as the dictionary

can be generated once and cached. This stage benefits sig-

nificantly from GPU acceleration: for a dictionary of approxi-

mately 324,000 chirplets, the GPU completed the transform in

1.06 seconds, compared to 13.67 seconds on a multithreaded

CPU baseline which is approximately a 12.9× speedup. All

tests were conducted using float32 precision.
While dictionary generation remains faster on CPU (21

seconds) than GPU (107 seconds), this step is performed

only once per parameter set and is therefore less critical in

interactive or iterative workflows, and it can also be cached to

use for other datasets. The transform was performed with an

order of 5, meaning five chirplets were used to approximate

each signal segment. Each test used a 10-second EEG epoch

sampled at 256 Hz. Parameter ranges were as follows:

• Time center: 0 to 2560 (step size: 32 samples)

• Frequency: 0.6 to 15 Hz (step size: 1 Hz)

• Log duration: –4 to 0 (step size: 0.4)

• Chirp rate: –10 to 10 (step size: 0.75)

These results demonstrate that GPU acceleration of the

Chirplet Transform’s search phase is both feasible and prac-

tical for real-time or iterative signal analysis. Despite slower

dictionary generation on GPU, the ability to cache and reuse

the dictionary enables rapid decomposition, making the ap-

proach well-suited for local workflows such as signal tuning,

prototyping, and personalized adaptation.

A more comprehensive performance profile which will

cover runtime breakdowns, resource usage, and scalability will

be presented in a forthcoming conference paper.
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Abstract—This project presents an interactive game system de-
signed to teach the concept of quaternions and enhance exercises
using an inertial measurement unit (IMU) and an addressable
LED strip. The system, mounted on a balance board, visualizes
quaternion-based rotations in order for this concept to be more
understandable and implements a gamified ”water spilling”
simulation to encourage controlled movement, leading to better
form, increased effectiveness of workouts, and increasing the
fun simultaneously. The ESP32 microcontroller processes IMU
data, translates orientation into LED patterns, and dynamically
adjusts visuals based on user movement. This report details the
system’s design, implementation, and experimental evaluation,
highlighting its effectiveness in education, fitness, and gaming
applications.

Index Terms—Quaternions, Fitness, IMU, Addressable LED
Strip, ESP32 Microcontroller, Gamification, Motion tracking.

I. INTRODUCTION

Understanding quaternions is crucial for modern motion-

tracking applications, yet their abstract mathematical nature

makes them difficult to grasp intuitively. In addition, balance

training is a key component in sports and rehabilitation. This

project integrates these domains by providing an interactive

real-time visualization of quaternions while simultaneously

engaging users in a gamified exercise.

The system consists of an ESP32DevkitV1 microcontroller,

an MPU9250 IMU, and a WS2812 addressable LED strip.

The IMU captures orientation data, which are then converted

into quaternion-based visualizations on the LED strip. Further-

more, a balance-based ”water spilling” game provides real-

time feedback based on the user’s stability. As the balance

board tilts, the user will begin losing ”water”, and they have

failed their game once all of the water is lost. Quaternions

are a generalization of complex numbers, consisting of a

scalar and a vector part, formed by 3 complex numbers.

These quaternions are mainly used in the fields of computer

graphics or robotics to represent and manipulate rotations in

a 3-dimensional space. Traditionally, Euler angles have been

used. However, quaternion-based measurements provide many

useful benefits. These include the fact that quaternions avoid

the gimbal lock problem, which can occur when using Euler

angles. When a gimbal lock occurs, 2 axes align and a degree

of freedom is lost. Additionally, the quaternion approach also

offers a more compact representation of the rotations, allows

for simpler interpolation, and is not affected by drifting values

as often, which can present a large problem when using yaw

values, for example. By combining the exercise and game

portions, which aim to improve training results by correcting

form, we are able to teach rotational geometry by allowing

users to feel as if they themselves have become quaternions

within a pool of water.

II. RELATED WORK

Quaternions are widely used in robotics, aerospace, and

augmented reality due to their ability to represent rotations

without gimbal lock [1]. Various projects have demonstrated

quaternion visualizations [2], but few integrate them into a

tangible, interactive system. Similarly, balance training has

been improved using digital tools [3], but the use of LED-

based feedback in gamified formats remains relatively unex-

plored. Dr. Mann has the idea of creating a quaternion ball

game in which users can learn to become quaternions while

potentially rehabilitating the ankles or playing various games,

and this concept was adapted to this created fitness training

device. Balance boards have mainly been used for the purpose

of rehabilitation. However, they have been expanded and

benefits have been shown when used for other purposes such

as conditioning or strengthening. They can improve balance,

posture, prevent injuries, increase core strength, and more.

Keeping balance requires 3 main bodily functions. The visual,

vestibular, and proprioceptive systems. Balance boards mainly

help train the proprioceptive system, which keep track of your

position in 3 dimensional space, similarly as the quaternion

display may do. While wobble boards currently do exist, none

seem to combine games along with them, which is where

the innovation of our project excels. By incorporating the

addressable LEDs in a sequential wave imprinting machine

(SWIM) fashion with the moving lights, it allows for even

more creative gaming options while exercising.

III. MATH BEHIND QUATERNIONS

Quaternions are a mathematical construct used to represent

rotations in three-dimensional space. A quaternion q is defined

as:

q = w + xi+ yj + zk (1)

where: i) w is the scalar part of the quaternion, ii) x, y, z

are the components of the vector part of the quaternion, iii)

i, j, k are the fundamental quaternion units.

The quaternion multiplication operation is used to combine

rotations. The product of two quaternions q1 = w1 + x1i +
y1j + z1k and q2 = w2 + x2i+ y2j + z2k is given by:
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Fig. 1. Board tilted with only few remaining LEDs for water game

q3 = q1 · q2 = (w1w2 − x1x2 − y1y2 − z1z2)

+ (w1x2 + x1w2 + y1z2 − z1y2) i

+ (w1y2 − x1z2 + y1w2 + z1x2) j

+ (w1z2 + x1y2 − y1x2 + z1w2) k (2)

The quaternion normalization process is also essential when

handling rotations. A normalized quaternion qnorm is given by:

qnorm =
q

|q| (3)

i2 = j2 = k2 = ijk = −1 (4)

where |q| =
√

w2 + x2 + y2 + z2 is the norm (magnitude)

of the quaternion.

In our application, the IMU data (accelerometer and gyro-

scope readings) are used to compute the rotation matrix, which

is then converted into quaternions for more stable and efficient

calculations. This is done using the following formula for a

rotation matrix R and its corresponding quaternion q:

q =
1

2

√

1 +R00 +R11 +R22

+

(

R21 −R12

4
,
R02 −R20

4
,
R10 −R01

4

)

(5)

IV. SYSTEM DESIGN

The system incorporates multiple hardware/physical com-

ponents, listed below.

A. Hardware Components

The system consists of:

• ESP32: Handles data processing and LED control.

• MPU9250 IMU: Provides quaternion data representing

board orientation.

• WS2812 LED Strip: Displays quaternion data and water

game effects.

Fig. 2. Water spilling towards tilt and screen mirroring movements

• Balance Board: Platform for user interaction.

• Power Supply: A battery or external power source to

drive the ESP32 and LED strip.

Fig. 3. Water tilting with quaternions displayed on the outer edge

These items are assembled in a manner that provides access

to the board, while keeping the electronic components secured.

The IMU is placed in the center of the board, to allow all

directions of tilt to be mapped correctly and as accurately as

possible. The LED strip is placed along the edge of the board.

Along the inner edge is displayed the water game, which will

light the board in blue initially, giving the appearance of a

full bucket of water for instance. The outer edge contains the

quaternion information, providing information on the direction

of the board, and changing dynamically as the board adjusts.

By slightly modifying the board and providing both an inner

and outer edge, some portion of the LEDs can be seen from

any possible angle that a person is able to reasonably look

from. A computer screen is also added to allow more options,

more visibility and clear visualization of the board as well, as

it will wirelessly receive IMU data using the microcontroller,

over WiFi.

B. Software Implementation

The software processes IMU data, applies quaternion math-

ematics, and updates the LED display. The game logic re-

duces LED availability based on tilt magnitude, simulating
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water loss. The ESP32 controls the flow of the game and

user interactions, with feedback mechanisms provided through

the LED strip. The quaternion information is also directly

displayed on the LED as well, with components shrinking or

growing in magnitude, as to showcase them adjusting in real-

time as the board is tilted or moved to be able to grasp the

concept better. The software was written in the Arduino IDE,

created with the specific hardware connections in mind. The

FastLED library was used to control each LED separately, in

real-time, based on the data received from the IMU. The code

is adjustable, where the number of LEDs (or the amount of

water) allowed for the water game can be adjusted based on

the size of the board very easily by changing the definition.

Global variables are used to store initial readings and game

state values. Additionally, the amount of LEDs lost needs to

be tracked. Once all of them are lost, then the game over

state is displayed on the LEDs, where the game portion turns

red, while the rest of the LED strip turns off. A function is

created to begin reading data from the IMU, which is then

converted to usable units. The MPU9250 register is used to

have information written and read. The data from the IMU is

written to this register, and then read by the microcontroller

to be used in calculations. This value updates in real-time.

Calculations are done to mitigate external factors such as

noise or gravity, then once those are complete, the quaternion

information is calculated based on the mathematical properties

and formulas from the previous section of the report. I2C

communication was configured between the IMU and the

microcontroller to allow the devices to communicate smoothly

using the SDA and SLC header pins. The values were printed

first to the serial monitor for testing and debugging purposes.

Additionally, WebSocket programming was implemented to

send quaternion data and have it plotted to a screen as

well. This allows for additional uses or visibility to users or

bystanders on the current state of the activity. Wifi connections

need to be enabled, and the credentials must be entered prior

to start.

Fig. 4. Flat board with full water display

V. IMPLEMENTATION

The core implementation consists of the following steps:

1) IMU Data Processing: The ESP32 reads raw acceler-

ation and gyroscope data, converts it into quaternions,

and filters noise.

2) Quaternion Visualization: The LED strip colour-codes

quaternion components to show orientation changes,

representing each quaternion component separately.

3) Water Game: If tilt exceeds a threshold, LEDs begin to

turn off, simulating water loss. The game resets when

all water is lost. The game is automatically restarted

once all water is lost from the portion of the LED strip

provided, after the LEDs flash red to ensure users are

aware that the game is over.

Fig. 5. Water tilting in inner portion with quaternions displayed on the outer
portion

Fig. 6. Water moving towards tilt with monitor replicating movements

VI. RESULTS AND DISCUSSION

Experiments showed that quaternion visualization effec-

tively depicted orientation changes in real time. The water

game provided an engaging way to encourage controlled

movements. Challenges included sensor drift and LED up-

date latency, which were mitigated through calibration and
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optimized rendering algorithms. In addition, many provided

libraries no longer functioned, meaning the math had to be

done manually in order to compute the information required.

The game kept users engaged, motivating them to maintain

better balance while learning about quaternion-based motion.

Users felt an increase in difficulty in balancing on the board

as they utilized more muscles and groups they had not thought

they required nearly as much. Users became more occupied

and spent longer exercising than on average, as the additional

challenge of not spilling water and the human nature of being

competitive made users attempt to spill the least amount of

water for as long as possible.

VII. CONCLUSION AND FUTURE WORK

This project successfully demonstrates an interactive tool

for visualization of quaternions and balance training. Future

work includes integrating a scoring system, adding machine

learning-based movement analysis to assess performance, and

enhancing graphical feedback through additional sensors such

as pressure sensors on the balance board to detect tilt more

precisely. The users became not only more interested in

working out, but also noted that they felt the exercise was

higher quality than their typical ones. Something that can be

done in the future is to implement the muse headband to

take baseline workout or activity readings and compare them

with the readings from our board, to achieve more accurate

readings. Additionally, this can be implemented with various

other workout equipment in order to help users improve form

and allow them to combine bun with exercise. This project

was successful, as it was able to meet the requirements tasked

to it, and showed not only to function, but to increase user

retention and ability.
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Abstract—This paper presents a dual-system approach for mo-
tion sensing applications. First, a wireless motion-sensing wand
is implemented using MPU9250 IMU and WS2812B LED strip,
communicating via Bluetooth Low Energy (BLE) to a central
processor for gesture recognition and LED animation control.
Second, a motion-controlled bullet-dodging game is developed
using ESP32-WROVER with MPU6050 IMU, employing Kalman
filtering for attitude estimation. Both systems demonstrate real-
time motion tracking capabilities with Kalman-filtered sensor
fusion, providing responsive control for interactive applications.
Experimental results show effective motion recognition and low-
latency feedback in both implementations.

Index Terms—Motion sensing, IMU, Kalman filter, BLE, ges-
ture recognition, sensor fusion, embedded systems

I. INTRODUCTION

We present two complementary motion-sensing systems: (1)

a wireless gesture-controlled wand with LED feedback, and

(2) a motion-controlled bullet-dodging game. Both implemen-

tations utilize inertial measurement units (IMUs) with Kalman

filtering for accurate motion tracking.

II. MAGIC WAND DESIGN

A. System Overview

We created a wireless motion-sensing wand using MPU9250

IMU and WS2812B LED strip. The IMU communicates over

BLE to a PC, which processes orientation data and transmits

commands to a Raspberry Pi Pico for LED animations.

B. Motion Estimation via Kalman Filtering

The MPU9250 provides acceleration and orientation data.

The PC implements a Kalman filter for 3D position and

velocity estimation.

1) Sensor Fusion: Accelerometer readings transformed to

world coordinates:

1 def transform_acc_with_gravity(ax, ay, az, roll,

pitch, yaw):

2 # Convert sensor acceleration to world frame

3 # using rotation matrices

4 ...

5 acc_avg = [sum(x[i] for x in acc_buffer) / len(

acc_buffer)

6 for i in range(3)]

2) Zero Velocity Update (ZUPT): ZUPT detects low-motion

states:

if magnitude(acc_avg) < zupt_threshold:

zupt_counter += 1

if zupt_counter >= zupt_stable_frames:

zupt_active = True

3) Kalman Position Estimation: Position update equations:

position[i]+ = velocity[i]×∆t

velocity[i]+ = acc avg[i]×∆t

Correction step:

K =
P

P +R
, position[i]+ = K × (z − position[i])

C. Gesture Recognition Logic

Gesture mapping dictionary:

1 COMBOS = { ("U", "D"): 1, ("D", "U"): 2, ..., ("R",

"D"): 12 }

Control command transmission:

1 await client_pico.write_gatt_char(PICO_WRITE_UUID, f

"{code} ".encode())

D. Light Output on Pico

LED control function:

1 def control_lights(code):

2 if code == "1": wave((0, 0, 255)) # Blue

stream

3 elif code == "4": rainbow_cycle(5)

4 elif code == "12": blink((255, 0, 255))

E. Bluetooth Setup

The Pico advertises its BLE service with UUID 0x7777,

while the PC connects to both WT901 and Pico:

1 ble = bluetooth.BLE()

2 ble.active(True)

3 ble.gatts_register_services(...)

Connection events and message reception are managed with

IRQ as seen in the code below:
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1 def bt_irq(event, data):

2 if event ==IRQ_GATTS_WRITE:

3 msg = ble.gatts_read(rx_handle).

decode().strip()

4 control_lights(msg)

The results of this can be seen in Figure 1

Fig. 1: Console output showing real-time direction recognition

III. GAME DESIGN — MOTION-CONTROLLED

BULLET-DODGING GAME

This experiment focuses on the development of a bullet-

dodging game controlled entirely through motion, using data

from an Inertial Measurement Unit (IMU). Specifically, we

employ the ESP32-WROVER microcontroller to interface with

an MPU6050 sensor, transmitting gyroscope and accelerom-

eter data via serial communication to a Python-based game

interface. Within the game, the player controls a blue square

that must avoid red bullets while collecting green squares to

accumulate points. This setup serves both as a test of real-time

motion control and as an engaging interactive application for

embedded sensor data processing.

IV. ATTITUDE ESTIMATION

A. Sensor Initialization

The MPU6050 IMU captures both linear acceleration and

angular velocity data through the function call:

mpu.getEvent(&a, &g, &temp);

Before beginning real-time operation, the system collects

2000 samples to estimate zero offsets for the accelerom-

eter and gyroscope along each axis. These offsets (e.g.,

ax_offset, ay_offset) are subtracted from subsequent

sensor readings to minimize drift and bias errors in measure-

ment.

B. Computing Time Difference

Accurate integration of angular velocity requires precise

timing. The time difference ∆t between sensor updates is

calculated as:

∆t =
now− last_time

1000.0

This provides the integration timestep in seconds, allowing

consistent angular updates across variable frame rates.

C. Estimating Angles from the Gyroscope

Using the gyroscope’s angular velocity data, we estimate

rotational angles as follows:

vroll = g.gyro.x

vpitch = g.gyro.y

gyro roll = previous roll +∆t · vroll

gyro pitch = previous pitch +∆t · vpitch

These values accumulate over time to provide an estimate of

the current orientation; however, they are prone to drift without

correction.

D. Estimating Angles from the Accelerometer

To correct for long-term drift, we compute independent

estimates of roll and pitch using accelerometer data and

trigonometric relationships with gravity:

accroll = atan2
(

y − ayoffset
,

z
)

· RAD TO DEG

accpitch = − atan2
(

x− axoffset
,

√

(y − ayoffset
)2 + z2

)

· RAD TO DEG

These accelerometer-based angles act as a reference for

correcting the integrated gyro readings.

V. KALMAN FILTER FOR ATTITUDE ESTIMATION

To fuse gyroscope and accelerometer data into a stable and

drift-free orientation estimate, we implement a Kalman filter

with the following steps:

A. Prediction Step

The error covariance matrix P is updated to reflect increased

uncertainty over time:

P [0][0]+ = 0.0025

B. Kalman Gain Computation

The Kalman gain K is calculated to determine the weighting

between the predicted and measured states:

K[0][0] =
P [0][0]

P [0][0] + 0.3

K[1][1] =
P [1][1]

P [1][1] + 0.3

C. State Update

Filtered roll and pitch angles are computed by correcting

the gyro estimates using accelerometer measurements:

roll = gyro roll +K[0][0] · (acc roll − gyro roll)

pitch = gyro pitch +K[1][1] · (acc pitch − gyro pitch)
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D. Covariance Update

Finally, the error covariance is updated to reflect the reduced

uncertainty:

P [0][0] = (1−K[0][0]) · P [0][0]

P [1][1] = (1−K[1][1]) · P [1][1]

This recursive filtering approach ensures that orientation

tracking remains smooth, accurate, and responsive throughout

gameplay.

VI. GAME RULES AND LOGIC

A. Player Control

The player is represented by a blue square, whose position is

updated in real-time based on the processed IMU data. Tilting

or moving the sensor alters the square’s position on screen,

creating an intuitive motion-based interface as seen in Figure

2. The game’s interface will now be explained and can be seen

in Figure 3

B. Hazards: Red Bullets

Red bullets serve as dynamic hazards within the game:

• Bullets move unpredictably, bouncing around the screen.

• Colliding with a red bullet results in a penalty of 100

points.

• Upon collision, the bullet disappears from play.

C. Score Items: Green Squares

Green squares act as score boosters and gameplay triggers:

• Collecting a green square adds 100 points to the player’s

score.

• Each green square collected also causes a new red bullet

to spawn, increasing the game’s difficulty.

D. Game Duration and End Conditions

The game runs for a fixed duration of 60 seconds. After time

expires, the final score is displayed, summarizing the player’s

performance in terms of agility and control precision.

VII. SERIAL DATA PROCESSING

A. Data Format

The sensor outputs data over a serial connection in the

form of a string formatted as num1/num2, where num1 and

num2 correspond to measurements along the vertical (Y) and

horizontal (X) axes, respectively. Both values are constrained

within a range of [−70, 70], representing the bounded output

of the sensor’s motion or orientation tracking system.

B. Implementation Notes

To receive the data stream, a Python script utilizing the

pyserial library listens on port COM3. The incoming string

is parsed in real time to extract the vertical and horizontal

components. These values are then used to control on-screen

elements rendered via the Pygame library, which provides a

2D graphical interface and maps input dynamics to visual feed-

back. This setup enables a responsive system for visualizing

and interpreting sensor data in an interactive environment.

Fig. 2: Demonstration of real-time pose estimation using

Kalman-filtered orientation angles to control player movement.

Fig. 3: Game window during play showing blue player square,

red bullets, and green point icons

VIII. RESULTS

Both systems demonstrated real-time performance with low

latency. The gesture recognition system achieved high accu-

racy in controlled tests, while the game maintained stable

frame rates during gameplay. Kalman filtering significantly

reduced drift compared to raw sensor data, enhancing overall

motion tracking precision.

IX. CONCLUSION

We have implemented two complementary motion-sensing

systems using IMUs with Kalman filtering. The wireless wand

provides intuitive gesture control with visual feedback, while

the motion-controlled game demonstrates responsive interac-
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tion. Future work includes multi-sensor fusion and machine

learning-based gesture recognition.
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ResultsApproach

Analyze the correlation between brainwave 
patterns detected by Muse S electrodes and facial 
emotions captured by web-cam.

Investigate how environmental factors influence 
emotional states, incorporating concepts of 
invironment and environment (S. Mann).

Develop insights into what external and internal 
stimuli contribute to happiness or sadness.

Correlating Brain Waves in Invironment with Emotional States in 
the Environment

Tanish Sharma

[1] Mann, S. (2024). Advancing Technology for Humanity and Earth 
(+Water+Air). arXiv. https://arxiv.org/abs/2501.00074

[2]Mann, S. (2023). The eXtended Uni/Meta/Verse (XV) and the Liminal 
Boundary Between Environment and Invironment. PhilPapers. 
https://philpapers.org/rec/MANTEU-3 

● The Muse S headband, equipped with EEG sensors, provides 
real-time tracking of brainwave activity, offering valuable 
insights into cognitive and emotional states.

● Facial emotions, a key component in understanding human 
affect, can be reliably detected using high-resolution 
webcams.

● Invironment (internal states) and environment 
(external surroundings) interact to shape 
emotions.

● Vironment: liminal space between 
environment and invironment, bridging 
internal and external.

● Extended Reality (XR) unifies physical, 
virtual, and social worlds.

● Mersivity: technology connecting people, 
nature, and the physical world

Figure 3: Materials: (A): Muse S Headband 
(B): Webcam (Creative Live Cam Sync 4K)

(A) (B)

Figure 1: Showcases concept of 
Invironment & Environment

Figure 2: Brain-wave emotion detection workflow

● Emotion Recognition Using AI: Facial emotions are detected 
through computer vision techniques, leveraging convolutional 
neural networks (CNNs) to classify expressions like 
happiness, sadness, and anger with high accuracy and 
real-time performance.

● Multimodal Data Fusion: Integrating EEG signals from Muse S 
with facial emotion data enables a comprehensive analysis of 
internal (invironment) and external (environment) factors 
influencing emotional states

Figure 4: Muse S Electrode Placements

Figure 4: Brain waves for Happy & Sad state with computer 
vision detecting the sentiment from facial expression
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